- home
- Advanced Search
- Energy Research
- Closed Access
- DE
- RO
- Applied Energy
- Energy Research
- Closed Access
- DE
- RO
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Iakovos T. Michailidis; Thomas Schild; Roozbeh Sangi; Panagiotis Michailidis; Christos Korkas; Johannes Fütterer; Dirk Müller; Elias B. Kosmatopoulos;Abstract A variety of novel, recyclable and reusable, construction materials has already been studied within literature during the past years, aiming at improving the overall energy efficiency ranking of the building envelope. However, several studies show that a delicate control of indoor climating elements can lead to a significant performance improvement by exploiting the building’s savings potential via smart adaptive HVAC regulation to exogenous uncertain disturbances (e.g. weather, occupancy). Building Optimization and Control (BOC) systems can be categorized into two different groups: centralized (requiring high data transmission rates at a central node from every corner of the overall system) and decentralized 1 (assuming an intercommunication among neighboring constituent systems). Moreover, both approaches can be further divided into two subcategories, respectively: model-assisted (usually introducing modeling oversimplifications) and model-free (typically presenting poor stability and very slow convergence rates). This paper presents the application of a novel, decentralized, agent-based , model-free BOC methodology (abbreviated as L4GPCAO) to a modern non-residential building (E.ON. Energy Research Center’s main building), equipped with controllable HVAC systems and renewable energy sources by utilizing the existing Building Management System (BES). The building testbed is located inside the RWTH Aachen University campus in Aachen, Germany. A combined rule criterion composed of the non-renewable energy consumption (NREC) and the thermal comfort index – aligned to international comfort standards – was adopted in all cases presented herein. Besides the limited availability of the specified building testbed, real-life experiments demonstrated operational effectiveness of the proposed approach in BOC applications with complex, emerging dynamics arising from the building’s occupancy and thermal characteristics. L4GPCAO outperformed the control strategy that was designed by the planers and system provider, in a conventional manner, requiring no more than five test days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Inga Bürger; Marc Linder; Michael Lutz;Abstract With hydrogen becoming more and more important as energy carrier, there is a need for high capacity storage technologies preferably operating at low pressures. Chemical storage in metal hydrides is promising for that purpose, but they require thermal management for hydrogen release and storage, respectively. To overcome this challenge, it is beneficial to store the heat needed for hydrogen release during hydrogen storage in the storage system keeping the additional effort to provide that heat low. In this work, the experimental proof of concept of an adiabatic storage reactor is presented. Magnesium hydride and magnesium hydroxide have been used for hydrogen storage and thermochemical heat storage, respectively. A prototype reactor has been developed and experimentally investigated. It was found that the operating temperature of the materials can be adjusted with the gas pressure in a way to establish a temperature gradient from the MgH2 to the Mg(OH)2 and vice versa. Hydrogen storage and release is enhanced by the thermochemical heating/cooling. A pressure of 9 bar is sufficient to store hydrogen with a capacity of 20.8 gH2 L-1 based on the two materials only, without the steel vessel or insulation. In the heat storage compartment, 300 °C have been reached at 9.75 bar during heat release which is high enough to drive the MgH2 dehydrogenation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jens Schneider; Mohammed A. Bahattab; Bengt Jaeckel; David Dassler; Matthias Pander; Matthias Ebert; Christian Hagendorf; Klemens Ilse; Hamed Hanifi; Ralph Gottschalg; Ulli Zeller; Mark Mirza;Abstract The global share of photovoltaic plants in desert locations increases continuously due to inexpensive land and higher yield due to higher irradiation levels. However, PV modules suffer from harsh environmental conditions that influence their lifetime and, consequently, the levelized cost of electricity. Environmental factors such as high temperature differences between nights and days, high ultraviolet doses, high ambient temperatures, and high airborne dust lead to durability and performance issues such as delamination, discoloration, fatigue of interconnection, breakage of solar cells, hot-spots, and power loss due to the soiling. In this work, different bills of materials and module designs are evaluated, targeting optimum PV output power while increasing the service life and performance of the PV modules in desert climates. A stepwise optimization of module components (solar cells, glass coating and polymers/encapsulation) and module design (full vs. half cells, tab widths) are performed by simulation and experimental approaches. Simulations results analyzes the loss mechanisms and electricity production of PV modules by considering the impact of module material and design Experimentally, ultraviolet stress tests and thermal cycling tests are performed for polymer durability and interconnection fatigue analysis. The soiling reduction potential of a newly developed glass coating is investigated by outdoor exposure tests in Saudi-Arabia. It is shown by proper choice of materials and optimized interconnection design, the efficiency of the module is increased by 9.58%rel. relative to the reference module. Furthermore, the choice of encapsulant and module design strongly affect the expected service-life, and soiling losses could be reduced up to 35%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Thorsten Koch; Thorsten Koch; Ying Chen; Xiuqin Xu;As the natural gas market is moving towards short-term planning, accurate and robust short-term forecasts of the demand and supply of natural gas is of fundamental importance for a stable energy supply, a natural gas control schedule, and transport operation on a daily basis. We propose a hybrid forecast model, Functional AutoRegressive and Convolutional Neural Network model, based on state-of-the-art statistical modeling and artificial neural networks. We conduct short-term forecasting of the hourly natural gas flows of 92 distribution nodes in the German high-pressure gas pipeline network, showing that the proposed model provides nice and stable accuracy for different types of nodes. It outperforms all the alternative models, with an improved relative accuracy up to twofold for plant nodes and up to fourfold for municipal nodes. For the border nodes with rather flat gas flows, it has an accuracy that is comparable to the best performing alternative model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Albert Ruiz-Alvarez; Jose Luis Dominguez-Garcia; Mousa Marzband; Andreas Sumper; +2 AuthorsAlbert Ruiz-Alvarez; Jose Luis Dominguez-Garcia; Mousa Marzband; Andreas Sumper; Andreas Sumper; Bogdan Tomoiaga;Abstract A Microgrid (MG) Energy Management System (EMS) is a vital supervisory control to make decisions regarding the best use of the electric power generation resources and storage devices within this MG. This paper presents an operational architecture for Real Time Operation (RTO) of an islanded MG. This architecture considers two different parts including Central Control Unit (CCU) and MG Testbed. CCU implements an EMS based on Local Energy Market (LEM) to control a MG. In order to reach this objective, this unit executes Day Ahead Scheduling (DAS) and Real Time Scheduling (RTS). Regarding DAS, a Modified Conventional EMS (MCEMS) based on LEM (MCEMS−LEM) algorithm has been proposed to find out hourly power set-points of Distributed Energy Resources (DERs) and customers. LEM is also presented in MCEMS−LEM to obtain the best purchasing price in Day-Ahead Market (DAM), as well as to maximize the utilization of existing DER. With regard to RTS, it must update and feedback the power set-points of DER by considering the results of DAS. The presented architecture is flexible and could be used for different configurations of MGs also in different scenarios. Simulations and experimental evaluations have been carried out using real data to test the performance and accuracy of the MG testbed. This paper aims to operate the MG in islanded mode, ensuring uninterruptable power supply services and reducing the global cost of generated power. Results demonstrate the effectiveness of the proposed algorithm and show a reduction in the generated power cost by almost 8.5%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 156 citations 156 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Kevin Mayer; Benjamin Rausch; Marie-Louise Arlt; Gunther Gust; Zhecheng Wang; Dirk Neumann; Ram Rajagopal;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV John Olsen; G. Heyer; Christoph D. Ummenhofer; John Page; T. Roediger;Abstract In this study, we assessed the performance and suitability of a novel control strategy for both a Mini Combined Heat and Power (MCHP) unit and a photovoltaic system, combined with thermal (TES) and electric (EES) energy storage systems. The newly developed control strategy incorporates a forecast for the photovoltaic system output throughout the day, coupled with a daily electric load projection. It also takes the current storage levels of the TES and the EES into account and identifies favourable EES system capacity set-points throughout the day. A simulation model of such a system was realised in Matlab and the performance of the new electric storage-following operational control compared to an identical system operated under a thermal load-following strategy. Furthermore, the investigated system was also analysed against a photovoltaic system with an EES, but without an MCHP unit. It was found that the degree of electric self-sufficiency was always higher in the system operated under the electric storage-following control strategy. Varying the size of the EES and the photovoltaic system, the highest degree of electric self-sufficiency (nearly 100%) was associated with the largest system configuration tested (16 kWh EES combined with a 14 kW photovoltaic system). Acceptable levels of self-sufficiency in excess of 95% were already reached in a system consisting of a 10 kWh EES and a 10 kW photovoltaic system. There is a strong indication that the specific daily scheduling of the MCHP unit combined with the anticipated daily PV system electricity output, advantageous energy storage levels and enhanced EES system capacity utilisation, clearly distinguish the novel electric storage-following control strategy from a thermal load-following operational control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Ulrike Wachsmann; Ulrike Wachsmann; Ulrike Wachsmann; Manfred Lenzen; Manfred Lenzen; Roberto Schaeffer; Richard Wood;This paper examines the sources of changes in energy use of the Brazilian economy of industries and households from 1970 to 1996, using structural decomposition analysis based on the logarithmic mean divisia index technique. Energy use can be decomposed into eight factors that explain changes in overall energy use over the entire time period, and within five sub-periods. The growth of energy use between 1970 and 1996 was mainly influenced by changes in affluence, population and intersectoral dependencies, while changes in direct energy intensity and per capita residential energy use had a retarding impact on energy use. The novel contributions of the paper are the alignment of a previously disparate data set, the use of supply-use tables for SDA, and the application of such an SDA to a developing country. Both contributions involve solving a range of methodological issues pertaining to handling of large data sets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 149 citations 149 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 BelgiumPublisher:Elsevier BV Weiser, Christian; Zeller, Vanessa; Reinicke, Frank; Wagner, Bernhard; Majer, Stefan; Vetter, Armin; Thraen, Daniela;Abstract The energetic use of residues from agriculture can foster the transition towards a more renewable energy supply. However, sustainability issues have to be considered along the entire provision chain as they affect the resource and energy potential as well as the achievable contribution to climate mitigation. Straw is one of the most important agricultural residues in Germany. It is not yet used for energy purposes extensively and compared to other agricultural feedstock it shows low competition with food, feed or fiber. This paper analyses on the one hand the sustainable potential of cereal straw for energy application in Germany considering the actual agricultural conditions, and on the other hand the global warming potential from different energy provision chains based on straw. Different humus-balance tools that are able to assess the organic matter (OM) demand to presume soil fertility. The analysis of straw potentials was applied at NUTS 3 level for Germany, based on statistical data. The results of this analysis were used as input data for the modeling of concepts for straw provision and use. Greenhouse gas (GHG) emissions were calculated for each concept in order to compare the global warming potential of various energy applications, to investigate the relative contribution of different production steps and to compare them with fossil energy applications. In total, 29.8 Tg of straw (fresh matter) are produced annually in Germany (1999–2007). Approximately 4.8 Tg of the total straw occurrence are annually required by animal husbandry. Between 7.97 and 13.25 Tg straw can be classified as sustainable straw. Highest straw potential (3.99 Mg ha−1) can be found in parts of Schleswig-Holstein, Mecklenburg–West Pomerania, North Rhine-Westphalia and Lower Saxony. But there are also regions that show a net deficit. The cumulated GHG emissions for the resulting concepts are between 8 and 35 g CO2-eq. MJ−1. In comparison to fossil energy applications, the highest reduction potential occurs for concepts for combined heat and power (CHP) provision, i.e. 223 g CO 2 -eq . MJ el - 1 . This study highlights the possible contribution of straw as renewable energy carrier, but also demonstrates that there are regional restrictions for straw use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Ludwig Kraft; Jan Bernd Habedank; Sandro Stock; Andreas Jossen; Johannes Kriegler; Lucas Hille; Michael F. Zaeh; Jan Hagemeister;Abstract Improving the performance characteristics of lithium-ion batteries is a central research objective for the widespread introduction of electric vehicles. Laser-induced structures in graphite anodes have been reported to improve various performance characteristics of lithium-ion batteries. Nevertheless, electrode structuring has been studied mostly with single-layer coin cells on a laboratory scale to date. In addition to electrochemical tests on multi-layer NMC111/graphite pouch cells with a nominal capacity of ≈ 2.9 Ah, this paper presents the transfer of the technology from the laboratory to an industry-oriented battery production scale. A significant improvement of the discharge rate capability of lithium-ion batteries with laser-structured anodes was observed at temperatures of -10 °C, 0 °C, and 25 °C at discharge rates of up to 8C. Moreover, an enhanced fast-charging capability at charge rates as high as 6C was determined. In an aging study with 500 charge and discharge cycles, a significantly higher capacity retention of cells containing structured anodes was demonstrated. The effects of aging were investigated by incremental capacity analyses. Additionally, the results are supported by post-mortem analyses of the anode material using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The investigations revealed a distinctly reduced surface layer formation on structured anodes in comparison to their non-structured counterparts, which is attributed to a decrease in lithium-plating during cycling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Iakovos T. Michailidis; Thomas Schild; Roozbeh Sangi; Panagiotis Michailidis; Christos Korkas; Johannes Fütterer; Dirk Müller; Elias B. Kosmatopoulos;Abstract A variety of novel, recyclable and reusable, construction materials has already been studied within literature during the past years, aiming at improving the overall energy efficiency ranking of the building envelope. However, several studies show that a delicate control of indoor climating elements can lead to a significant performance improvement by exploiting the building’s savings potential via smart adaptive HVAC regulation to exogenous uncertain disturbances (e.g. weather, occupancy). Building Optimization and Control (BOC) systems can be categorized into two different groups: centralized (requiring high data transmission rates at a central node from every corner of the overall system) and decentralized 1 (assuming an intercommunication among neighboring constituent systems). Moreover, both approaches can be further divided into two subcategories, respectively: model-assisted (usually introducing modeling oversimplifications) and model-free (typically presenting poor stability and very slow convergence rates). This paper presents the application of a novel, decentralized, agent-based , model-free BOC methodology (abbreviated as L4GPCAO) to a modern non-residential building (E.ON. Energy Research Center’s main building), equipped with controllable HVAC systems and renewable energy sources by utilizing the existing Building Management System (BES). The building testbed is located inside the RWTH Aachen University campus in Aachen, Germany. A combined rule criterion composed of the non-renewable energy consumption (NREC) and the thermal comfort index – aligned to international comfort standards – was adopted in all cases presented herein. Besides the limited availability of the specified building testbed, real-life experiments demonstrated operational effectiveness of the proposed approach in BOC applications with complex, emerging dynamics arising from the building’s occupancy and thermal characteristics. L4GPCAO outperformed the control strategy that was designed by the planers and system provider, in a conventional manner, requiring no more than five test days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Inga Bürger; Marc Linder; Michael Lutz;Abstract With hydrogen becoming more and more important as energy carrier, there is a need for high capacity storage technologies preferably operating at low pressures. Chemical storage in metal hydrides is promising for that purpose, but they require thermal management for hydrogen release and storage, respectively. To overcome this challenge, it is beneficial to store the heat needed for hydrogen release during hydrogen storage in the storage system keeping the additional effort to provide that heat low. In this work, the experimental proof of concept of an adiabatic storage reactor is presented. Magnesium hydride and magnesium hydroxide have been used for hydrogen storage and thermochemical heat storage, respectively. A prototype reactor has been developed and experimentally investigated. It was found that the operating temperature of the materials can be adjusted with the gas pressure in a way to establish a temperature gradient from the MgH2 to the Mg(OH)2 and vice versa. Hydrogen storage and release is enhanced by the thermochemical heating/cooling. A pressure of 9 bar is sufficient to store hydrogen with a capacity of 20.8 gH2 L-1 based on the two materials only, without the steel vessel or insulation. In the heat storage compartment, 300 °C have been reached at 9.75 bar during heat release which is high enough to drive the MgH2 dehydrogenation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jens Schneider; Mohammed A. Bahattab; Bengt Jaeckel; David Dassler; Matthias Pander; Matthias Ebert; Christian Hagendorf; Klemens Ilse; Hamed Hanifi; Ralph Gottschalg; Ulli Zeller; Mark Mirza;Abstract The global share of photovoltaic plants in desert locations increases continuously due to inexpensive land and higher yield due to higher irradiation levels. However, PV modules suffer from harsh environmental conditions that influence their lifetime and, consequently, the levelized cost of electricity. Environmental factors such as high temperature differences between nights and days, high ultraviolet doses, high ambient temperatures, and high airborne dust lead to durability and performance issues such as delamination, discoloration, fatigue of interconnection, breakage of solar cells, hot-spots, and power loss due to the soiling. In this work, different bills of materials and module designs are evaluated, targeting optimum PV output power while increasing the service life and performance of the PV modules in desert climates. A stepwise optimization of module components (solar cells, glass coating and polymers/encapsulation) and module design (full vs. half cells, tab widths) are performed by simulation and experimental approaches. Simulations results analyzes the loss mechanisms and electricity production of PV modules by considering the impact of module material and design Experimentally, ultraviolet stress tests and thermal cycling tests are performed for polymer durability and interconnection fatigue analysis. The soiling reduction potential of a newly developed glass coating is investigated by outdoor exposure tests in Saudi-Arabia. It is shown by proper choice of materials and optimized interconnection design, the efficiency of the module is increased by 9.58%rel. relative to the reference module. Furthermore, the choice of encapsulant and module design strongly affect the expected service-life, and soiling losses could be reduced up to 35%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Thorsten Koch; Thorsten Koch; Ying Chen; Xiuqin Xu;As the natural gas market is moving towards short-term planning, accurate and robust short-term forecasts of the demand and supply of natural gas is of fundamental importance for a stable energy supply, a natural gas control schedule, and transport operation on a daily basis. We propose a hybrid forecast model, Functional AutoRegressive and Convolutional Neural Network model, based on state-of-the-art statistical modeling and artificial neural networks. We conduct short-term forecasting of the hourly natural gas flows of 92 distribution nodes in the German high-pressure gas pipeline network, showing that the proposed model provides nice and stable accuracy for different types of nodes. It outperforms all the alternative models, with an improved relative accuracy up to twofold for plant nodes and up to fourfold for municipal nodes. For the border nodes with rather flat gas flows, it has an accuracy that is comparable to the best performing alternative model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Albert Ruiz-Alvarez; Jose Luis Dominguez-Garcia; Mousa Marzband; Andreas Sumper; +2 AuthorsAlbert Ruiz-Alvarez; Jose Luis Dominguez-Garcia; Mousa Marzband; Andreas Sumper; Andreas Sumper; Bogdan Tomoiaga;Abstract A Microgrid (MG) Energy Management System (EMS) is a vital supervisory control to make decisions regarding the best use of the electric power generation resources and storage devices within this MG. This paper presents an operational architecture for Real Time Operation (RTO) of an islanded MG. This architecture considers two different parts including Central Control Unit (CCU) and MG Testbed. CCU implements an EMS based on Local Energy Market (LEM) to control a MG. In order to reach this objective, this unit executes Day Ahead Scheduling (DAS) and Real Time Scheduling (RTS). Regarding DAS, a Modified Conventional EMS (MCEMS) based on LEM (MCEMS−LEM) algorithm has been proposed to find out hourly power set-points of Distributed Energy Resources (DERs) and customers. LEM is also presented in MCEMS−LEM to obtain the best purchasing price in Day-Ahead Market (DAM), as well as to maximize the utilization of existing DER. With regard to RTS, it must update and feedback the power set-points of DER by considering the results of DAS. The presented architecture is flexible and could be used for different configurations of MGs also in different scenarios. Simulations and experimental evaluations have been carried out using real data to test the performance and accuracy of the MG testbed. This paper aims to operate the MG in islanded mode, ensuring uninterruptable power supply services and reducing the global cost of generated power. Results demonstrate the effectiveness of the proposed algorithm and show a reduction in the generated power cost by almost 8.5%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 156 citations 156 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Kevin Mayer; Benjamin Rausch; Marie-Louise Arlt; Gunther Gust; Zhecheng Wang; Dirk Neumann; Ram Rajagopal;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV John Olsen; G. Heyer; Christoph D. Ummenhofer; John Page; T. Roediger;Abstract In this study, we assessed the performance and suitability of a novel control strategy for both a Mini Combined Heat and Power (MCHP) unit and a photovoltaic system, combined with thermal (TES) and electric (EES) energy storage systems. The newly developed control strategy incorporates a forecast for the photovoltaic system output throughout the day, coupled with a daily electric load projection. It also takes the current storage levels of the TES and the EES into account and identifies favourable EES system capacity set-points throughout the day. A simulation model of such a system was realised in Matlab and the performance of the new electric storage-following operational control compared to an identical system operated under a thermal load-following strategy. Furthermore, the investigated system was also analysed against a photovoltaic system with an EES, but without an MCHP unit. It was found that the degree of electric self-sufficiency was always higher in the system operated under the electric storage-following control strategy. Varying the size of the EES and the photovoltaic system, the highest degree of electric self-sufficiency (nearly 100%) was associated with the largest system configuration tested (16 kWh EES combined with a 14 kW photovoltaic system). Acceptable levels of self-sufficiency in excess of 95% were already reached in a system consisting of a 10 kWh EES and a 10 kW photovoltaic system. There is a strong indication that the specific daily scheduling of the MCHP unit combined with the anticipated daily PV system electricity output, advantageous energy storage levels and enhanced EES system capacity utilisation, clearly distinguish the novel electric storage-following control strategy from a thermal load-following operational control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Ulrike Wachsmann; Ulrike Wachsmann; Ulrike Wachsmann; Manfred Lenzen; Manfred Lenzen; Roberto Schaeffer; Richard Wood;This paper examines the sources of changes in energy use of the Brazilian economy of industries and households from 1970 to 1996, using structural decomposition analysis based on the logarithmic mean divisia index technique. Energy use can be decomposed into eight factors that explain changes in overall energy use over the entire time period, and within five sub-periods. The growth of energy use between 1970 and 1996 was mainly influenced by changes in affluence, population and intersectoral dependencies, while changes in direct energy intensity and per capita residential energy use had a retarding impact on energy use. The novel contributions of the paper are the alignment of a previously disparate data set, the use of supply-use tables for SDA, and the application of such an SDA to a developing country. Both contributions involve solving a range of methodological issues pertaining to handling of large data sets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 149 citations 149 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 BelgiumPublisher:Elsevier BV Weiser, Christian; Zeller, Vanessa; Reinicke, Frank; Wagner, Bernhard; Majer, Stefan; Vetter, Armin; Thraen, Daniela;Abstract The energetic use of residues from agriculture can foster the transition towards a more renewable energy supply. However, sustainability issues have to be considered along the entire provision chain as they affect the resource and energy potential as well as the achievable contribution to climate mitigation. Straw is one of the most important agricultural residues in Germany. It is not yet used for energy purposes extensively and compared to other agricultural feedstock it shows low competition with food, feed or fiber. This paper analyses on the one hand the sustainable potential of cereal straw for energy application in Germany considering the actual agricultural conditions, and on the other hand the global warming potential from different energy provision chains based on straw. Different humus-balance tools that are able to assess the organic matter (OM) demand to presume soil fertility. The analysis of straw potentials was applied at NUTS 3 level for Germany, based on statistical data. The results of this analysis were used as input data for the modeling of concepts for straw provision and use. Greenhouse gas (GHG) emissions were calculated for each concept in order to compare the global warming potential of various energy applications, to investigate the relative contribution of different production steps and to compare them with fossil energy applications. In total, 29.8 Tg of straw (fresh matter) are produced annually in Germany (1999–2007). Approximately 4.8 Tg of the total straw occurrence are annually required by animal husbandry. Between 7.97 and 13.25 Tg straw can be classified as sustainable straw. Highest straw potential (3.99 Mg ha−1) can be found in parts of Schleswig-Holstein, Mecklenburg–West Pomerania, North Rhine-Westphalia and Lower Saxony. But there are also regions that show a net deficit. The cumulated GHG emissions for the resulting concepts are between 8 and 35 g CO2-eq. MJ−1. In comparison to fossil energy applications, the highest reduction potential occurs for concepts for combined heat and power (CHP) provision, i.e. 223 g CO 2 -eq . MJ el - 1 . This study highlights the possible contribution of straw as renewable energy carrier, but also demonstrates that there are regional restrictions for straw use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Ludwig Kraft; Jan Bernd Habedank; Sandro Stock; Andreas Jossen; Johannes Kriegler; Lucas Hille; Michael F. Zaeh; Jan Hagemeister;Abstract Improving the performance characteristics of lithium-ion batteries is a central research objective for the widespread introduction of electric vehicles. Laser-induced structures in graphite anodes have been reported to improve various performance characteristics of lithium-ion batteries. Nevertheless, electrode structuring has been studied mostly with single-layer coin cells on a laboratory scale to date. In addition to electrochemical tests on multi-layer NMC111/graphite pouch cells with a nominal capacity of ≈ 2.9 Ah, this paper presents the transfer of the technology from the laboratory to an industry-oriented battery production scale. A significant improvement of the discharge rate capability of lithium-ion batteries with laser-structured anodes was observed at temperatures of -10 °C, 0 °C, and 25 °C at discharge rates of up to 8C. Moreover, an enhanced fast-charging capability at charge rates as high as 6C was determined. In an aging study with 500 charge and discharge cycles, a significantly higher capacity retention of cells containing structured anodes was demonstrated. The effects of aging were investigated by incremental capacity analyses. Additionally, the results are supported by post-mortem analyses of the anode material using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The investigations revealed a distinctly reduced surface layer formation on structured anodes in comparison to their non-structured counterparts, which is attributed to a decrease in lithium-plating during cycling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu