- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOSDG [Beta]
Source
Organization
- Energy Research
- FI
- RU
- Energy Research
- FI
- RU
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Esa Vakkilainen; Richard Sikkema; Svetlana Proskurina; Manjola Banja;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Juha Viholainen; Tero Ahonen; Risto Soukka; Jussi Tamminen; Esa Vakkilainen; Jero Ahola;The article aims to find a solution for the energy efficiency improvements in variable speed-controlled parallel pumping systems with lesser initial data and without additional flow metering and start-up measurements. This paper introduces a new control strategy for variable speed-controlled parallel pumps based on flow rate estimation and pump operation analysis utilizing variable speed drives. The energy-saving potential of the new control strategy is studied with simulations and laboratory measurements. The energy consumption of the parallel pumps using the new control strategy is compared with the traditional rotational speed control strategy of parallel pumps. The benefit of the new control strategy is the opportunity to operate variable speed-controlled parallel pumps in a region which suggests improved energy efficiency and lower risk of mechanical failure of the controlled pumps compared with traditional control. The article concludes by discussing the implications of the findings for different applications and varying system conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-012-9188-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-012-9188-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:AKA | Role of forest industry t...AKA| Role of forest industry transformation in energy efficiency improvement and reducing CO2 emissions / Consortium: METEJussi Saari; Ekaterina Sermyagina; Juha Kaikko; Markus Haider; Marcelo Hamaguchi; Esa Vakkilainen;doi: 10.3390/en14061550
Sustainability and energy efficiency have become important factors for many industrial processes, including chemical pulping. Recently complex back-end heat recovery solutions have been applied to biomass-fired boilers, lowering stack temperatures and recovering some of the latent heat of the moisture by condensation. Modern kraft recovery boiler flue gas offers still unutilized heat recovery possibilities. Scrubbers have been used, but the focus has been on gas cleaning; heat recovery implementations remain simple. The goal of this study is to evaluate the potential to increase the power generation and efficiency of chemical pulping by improved back-end heat recovery from the recovery boiler. Different configurations of heat recovery schemes and different heat sink options are considered, including heat pumps. IPSEpro simulation software is used to model the boiler and steam cycle of a modern Nordic pulp mill. When heat pumps are used to upgrade some of the recovered low-grade heat, up to +23 MW gross and +16.7 MW net power generation increase was observed when the whole pulp mill in addition to the boiler and steam cycle is considered as heat consumer. Combustion air humidification proved to yield a benefit only when assuming the largest heat sink scenario for the pulp mill.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:AKA | Role of forest industry t...AKA| Role of forest industry transformation in energy efficiency improvement and reducing CO2 emissions / Consortium: METEAuthors: Satu Lipiäinen; Ekaterina Sermyagina; Katja Kuparinen; Esa Vakkilainen;The forest industry is a significant emitter of CO2 and thus it needs to transform toward a more sustainable operation in order to contribute to tackling climate change. This paper looks at the progress, tools, possibilities, and barriers of Finnish and Swedish forest industries in achieving deep decarbonization. Finland and Sweden have set ambitious national targets to reach net negative greenhouse gas emissions. The role of the forest industry in reaching national targets in these countries remains unclear even if significant fossil CO2 emission reduction and efficiency improvement has occurred. If the forest industries in these countries fulfill their planned future visions, their contribution to meeting the targets will be substantial. This study identified the largest CO2 emitting sectors in the forest industry. They are for both countries, arranged by size, transport including non-road mobile machinery, on-site energy production, fossil fuel use in processes (lime kilns and dryers), and purchased electricity. Viable decarbonization measures exist for key fossil CO2 emissions sources, but several technical, economic, and political barriers are hindering their implementation. Fuel switching from fossil energy sources to bio-based alternatives is the main tool in the decarbonization of the forest sector in both countries, but also electrification of e.g. transport, provides emission reduction opportunities. The forest industry has a high and sustainable potential to become carbon-negative by investing in bioenergy with carbon capture and storage (BECCS) but achieving net-zero emissions might not be realistic without changes in policies and suitable incentives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Esa Vakkilainen; Vitaliy Sergeev; Juha Kaikko; Aleksi Mankonen;Abstract Mathematical models of circulating fluidized bed (CFB) combustion systems vary from simple lumped models to full-scale 3D models with multi-phase flow fields. Models help to predict the behavior of the boiler under new operating conditions and to understand the underlying phenomena. Is it more important to make experiments or models? The answer is both. The real values can be assessed with the help of experiments and refined models. Is a complex model always better than a simple one? A simple model can be more easily modified and better adapted to the actual use. A 1,5-dimensional model of a CFB furnace is the simplest possible model that takes into account the most important heat transfer and flow features. Of these solids circulation is the most important factor that determines the amount of heat transfer at the furnace walls. Consequently, regulating the solids circulation is the fundamental means of load control in CFB furnaces. One dimensional model takes into account only the vertical flow direction, but 1,5-dimensional model considers solids circulation inside the furnace as well. The internal circulation is up to 2 times greater than the circulation around the solids separator and return in CFB combustors. 1,5-dimensional model is also called the core-annulus model. The furnace is considered as a cylinder with an annular space around it. The hot solids flow upwards along the cylinder and downwards along the annular space. In this study, a core-annulus model is implemented using a commercial IPSEpro software. The developed model consists of several modules. The mathematical principles of each module is described. The software is also presented briefly. The new model is applied to study the behavior of a large biomass boiler. The model inputs include mass flows of fuel and air, fuel type and parameters regarding the solids amount, size and distribution. In addition to inputs for the design operation, other scenarios are considered such as partial load and burning of different fuels. Strengths and weaknesses of the model are also assessed and pathways of future research are reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Juha Kaikko; Ekaterina Sermyagina; Vitaly Sergeev; Jussi Saari; Esa Vakkilainen;Abstract Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Débora G. Faria; Mariana M.O. Carvalho; Márcio R.V. Neto; Eduardo C. de Paula; Marcelo Cardoso; Esa K. Vakkilainen;International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Larisse Aparecida Ribas Batalha; Fernando José Borges Gomes; Esa Vakkilainen; Clara Lisseth Mendoza Martinez; +6 AuthorsLarisse Aparecida Ribas Batalha; Fernando José Borges Gomes; Esa Vakkilainen; Clara Lisseth Mendoza Martinez; Clara Lisseth Mendoza Martinez; Clara Lisseth Mendoza Martinez; Marcelo Cardoso; Elém Patrícia Alves Rocha; Elém Patrícia Alves Rocha; Angélica de Cássia Oliveira Carneiro;Abstract Chemical quantitative characterization of biomass is relevant for waste to energy recovery technologies. In the present work, selected agroindustry solid residues from coffee crops – parchment and coffee shrub, i.e., stem, branches and leaves – were characterized. Properties such proximate, ultimate and biochemical composition, energy content, and thermogravimetric analysis, were evaluated. Results showed high values of higher heating value and volatile matter content. The silica contents are small for all samples. Additionally, the high content of extractives and lignin, reveal that these residual biomasses are more suitable for charcoal than cellulose pulp production. The extensive residue characterization provided valuable data that helped in outcome of the evaluation of different conversion technologies as being an environmentally friendly alternative, contributing to sustainable, reliable, carbon-neutral form of modern energy and upgrade the large quantity of waste generated by the coffee industry into energetically valued residues, by improving their management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Marcelo Hamaguchi; Esa Vakkilainen; Samuel Nelson; Melegari de Souza; Guilherme Fracaro;doi: 10.3390/en5093550
Industrial energy efficiency has received increasing attention in many countries because of its importance in the pursuit of energy supply security, increased economic competitiveness and in the mitigation of greenhouse gases emissions. This paper aimed to evaluate the energy consumption development of the Brazilian pulp and paper industry through an energy decomposition analysis and an energy efficiency index approach over a 30 years period. An international comparison with other important paper-producing countries (i.e., Canada, United States of America, Finland and Sweden) was carried out. It was concluded that despite a significant increase in the energy efficiency levels, responsible for 5.6 PJ savings in electricity consumption and for 38.6 PJ savings in fuels consumption between 1979 and 2009, a saving potential of 7.8 PJ and 146.2 PJ related to the annual consumption of electricity and fuels, respectively, could be identified in the Brazilian pulp and paper industry. Among the countries evolved in the international comparison, both the Swedish and Finnish industries were the most efficient, followed by the Brazilian, American and Canadian, the latter being the only one where there was a reduction in the energy efficiency levels from 1979 to 2009.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:American Chemical Society (ACS) Kauppinen, Esko I.; Pyykönen, Jouni; Jokiniemi, Jorma; Aurela, Minna; Vakkilainen, Esa; Janka; Kauko; Mikkanen, Pirita;doi: 10.1021/ef980189o
Combustion aerosol measurement methods were introduced and applied for extensive ash formation studies at four operating recovery boilers in Finland. Ash particle mass size distributions determined with a Berner-type low-pressure impactor downstream the heat exchangers were clearly bimodal with the fine mode at about 2 μm and the coarse mode above 3 μm aerodynamic diameter. According to SEM images, fine ash mode consists of individual, almost spherical 0.3−0.7 μm alkali salt particles and of agglomerates with few primary particles of similar diameter and shape. The degree of fine mode primary particle sintering increased when increasing boiler heat load. Coarse mode includes large agglomerates with up to thousands of 0.3−0.7 μm alkali salt primary particles and spherical silica particles. Ash particle main component was sodium sulfate as determined with X-ray diffraction. Sodium-to-sulfur molar ratio of ash particles calculated on the analyses results with an ion chromatography decreased from the upper furnace sampling point to electrostatic precipitator inlet conditions, indicating sulfation of ash particles within the heat exchanger section. Chlorine in ash was bound as sodium chloride, no potassium chloride was detected with X-ray absorption fine structure spectroscopy. Furnace measurements showed that fine mode ash particles are formed already in the furnace via vapor condensation. The extents of release of 12% for Na, 24% for S, and 48% for Cl were determined on the basis of ion concentrations in fine particles and the mass balance calculation on the recovery boiler. Coarse particles observed downstream the heat exchangers are proposed to form mainly via entrainment of large agglomerates of fine ash particles deposited on the heat exchangers. The fine mode particle size was insensitive to the furnace conditions although the particle concentration increased when the furnace gas temperature increased. This and the increase of Na/S molar ratio in the particles indicates that Na volatilization increases with the increasing furnace temperature, whereas S release is less sensitive to the temperature increase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef980189o&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef980189o&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Esa Vakkilainen; Richard Sikkema; Svetlana Proskurina; Manjola Banja;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Juha Viholainen; Tero Ahonen; Risto Soukka; Jussi Tamminen; Esa Vakkilainen; Jero Ahola;The article aims to find a solution for the energy efficiency improvements in variable speed-controlled parallel pumping systems with lesser initial data and without additional flow metering and start-up measurements. This paper introduces a new control strategy for variable speed-controlled parallel pumps based on flow rate estimation and pump operation analysis utilizing variable speed drives. The energy-saving potential of the new control strategy is studied with simulations and laboratory measurements. The energy consumption of the parallel pumps using the new control strategy is compared with the traditional rotational speed control strategy of parallel pumps. The benefit of the new control strategy is the opportunity to operate variable speed-controlled parallel pumps in a region which suggests improved energy efficiency and lower risk of mechanical failure of the controlled pumps compared with traditional control. The article concludes by discussing the implications of the findings for different applications and varying system conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-012-9188-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-012-9188-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:AKA | Role of forest industry t...AKA| Role of forest industry transformation in energy efficiency improvement and reducing CO2 emissions / Consortium: METEJussi Saari; Ekaterina Sermyagina; Juha Kaikko; Markus Haider; Marcelo Hamaguchi; Esa Vakkilainen;doi: 10.3390/en14061550
Sustainability and energy efficiency have become important factors for many industrial processes, including chemical pulping. Recently complex back-end heat recovery solutions have been applied to biomass-fired boilers, lowering stack temperatures and recovering some of the latent heat of the moisture by condensation. Modern kraft recovery boiler flue gas offers still unutilized heat recovery possibilities. Scrubbers have been used, but the focus has been on gas cleaning; heat recovery implementations remain simple. The goal of this study is to evaluate the potential to increase the power generation and efficiency of chemical pulping by improved back-end heat recovery from the recovery boiler. Different configurations of heat recovery schemes and different heat sink options are considered, including heat pumps. IPSEpro simulation software is used to model the boiler and steam cycle of a modern Nordic pulp mill. When heat pumps are used to upgrade some of the recovered low-grade heat, up to +23 MW gross and +16.7 MW net power generation increase was observed when the whole pulp mill in addition to the boiler and steam cycle is considered as heat consumer. Combustion air humidification proved to yield a benefit only when assuming the largest heat sink scenario for the pulp mill.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:AKA | Role of forest industry t...AKA| Role of forest industry transformation in energy efficiency improvement and reducing CO2 emissions / Consortium: METEAuthors: Satu Lipiäinen; Ekaterina Sermyagina; Katja Kuparinen; Esa Vakkilainen;The forest industry is a significant emitter of CO2 and thus it needs to transform toward a more sustainable operation in order to contribute to tackling climate change. This paper looks at the progress, tools, possibilities, and barriers of Finnish and Swedish forest industries in achieving deep decarbonization. Finland and Sweden have set ambitious national targets to reach net negative greenhouse gas emissions. The role of the forest industry in reaching national targets in these countries remains unclear even if significant fossil CO2 emission reduction and efficiency improvement has occurred. If the forest industries in these countries fulfill their planned future visions, their contribution to meeting the targets will be substantial. This study identified the largest CO2 emitting sectors in the forest industry. They are for both countries, arranged by size, transport including non-road mobile machinery, on-site energy production, fossil fuel use in processes (lime kilns and dryers), and purchased electricity. Viable decarbonization measures exist for key fossil CO2 emissions sources, but several technical, economic, and political barriers are hindering their implementation. Fuel switching from fossil energy sources to bio-based alternatives is the main tool in the decarbonization of the forest sector in both countries, but also electrification of e.g. transport, provides emission reduction opportunities. The forest industry has a high and sustainable potential to become carbon-negative by investing in bioenergy with carbon capture and storage (BECCS) but achieving net-zero emissions might not be realistic without changes in policies and suitable incentives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Esa Vakkilainen; Vitaliy Sergeev; Juha Kaikko; Aleksi Mankonen;Abstract Mathematical models of circulating fluidized bed (CFB) combustion systems vary from simple lumped models to full-scale 3D models with multi-phase flow fields. Models help to predict the behavior of the boiler under new operating conditions and to understand the underlying phenomena. Is it more important to make experiments or models? The answer is both. The real values can be assessed with the help of experiments and refined models. Is a complex model always better than a simple one? A simple model can be more easily modified and better adapted to the actual use. A 1,5-dimensional model of a CFB furnace is the simplest possible model that takes into account the most important heat transfer and flow features. Of these solids circulation is the most important factor that determines the amount of heat transfer at the furnace walls. Consequently, regulating the solids circulation is the fundamental means of load control in CFB furnaces. One dimensional model takes into account only the vertical flow direction, but 1,5-dimensional model considers solids circulation inside the furnace as well. The internal circulation is up to 2 times greater than the circulation around the solids separator and return in CFB combustors. 1,5-dimensional model is also called the core-annulus model. The furnace is considered as a cylinder with an annular space around it. The hot solids flow upwards along the cylinder and downwards along the annular space. In this study, a core-annulus model is implemented using a commercial IPSEpro software. The developed model consists of several modules. The mathematical principles of each module is described. The software is also presented briefly. The new model is applied to study the behavior of a large biomass boiler. The model inputs include mass flows of fuel and air, fuel type and parameters regarding the solids amount, size and distribution. In addition to inputs for the design operation, other scenarios are considered such as partial load and burning of different fuels. Strengths and weaknesses of the model are also assessed and pathways of future research are reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Juha Kaikko; Ekaterina Sermyagina; Vitaly Sergeev; Jussi Saari; Esa Vakkilainen;Abstract Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.06.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Débora G. Faria; Mariana M.O. Carvalho; Márcio R.V. Neto; Eduardo C. de Paula; Marcelo Cardoso; Esa K. Vakkilainen;International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Larisse Aparecida Ribas Batalha; Fernando José Borges Gomes; Esa Vakkilainen; Clara Lisseth Mendoza Martinez; +6 AuthorsLarisse Aparecida Ribas Batalha; Fernando José Borges Gomes; Esa Vakkilainen; Clara Lisseth Mendoza Martinez; Clara Lisseth Mendoza Martinez; Clara Lisseth Mendoza Martinez; Marcelo Cardoso; Elém Patrícia Alves Rocha; Elém Patrícia Alves Rocha; Angélica de Cássia Oliveira Carneiro;Abstract Chemical quantitative characterization of biomass is relevant for waste to energy recovery technologies. In the present work, selected agroindustry solid residues from coffee crops – parchment and coffee shrub, i.e., stem, branches and leaves – were characterized. Properties such proximate, ultimate and biochemical composition, energy content, and thermogravimetric analysis, were evaluated. Results showed high values of higher heating value and volatile matter content. The silica contents are small for all samples. Additionally, the high content of extractives and lignin, reveal that these residual biomasses are more suitable for charcoal than cellulose pulp production. The extensive residue characterization provided valuable data that helped in outcome of the evaluation of different conversion technologies as being an environmentally friendly alternative, contributing to sustainable, reliable, carbon-neutral form of modern energy and upgrade the large quantity of waste generated by the coffee industry into energetically valued residues, by improving their management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Marcelo Hamaguchi; Esa Vakkilainen; Samuel Nelson; Melegari de Souza; Guilherme Fracaro;doi: 10.3390/en5093550
Industrial energy efficiency has received increasing attention in many countries because of its importance in the pursuit of energy supply security, increased economic competitiveness and in the mitigation of greenhouse gases emissions. This paper aimed to evaluate the energy consumption development of the Brazilian pulp and paper industry through an energy decomposition analysis and an energy efficiency index approach over a 30 years period. An international comparison with other important paper-producing countries (i.e., Canada, United States of America, Finland and Sweden) was carried out. It was concluded that despite a significant increase in the energy efficiency levels, responsible for 5.6 PJ savings in electricity consumption and for 38.6 PJ savings in fuels consumption between 1979 and 2009, a saving potential of 7.8 PJ and 146.2 PJ related to the annual consumption of electricity and fuels, respectively, could be identified in the Brazilian pulp and paper industry. Among the countries evolved in the international comparison, both the Swedish and Finnish industries were the most efficient, followed by the Brazilian, American and Canadian, the latter being the only one where there was a reduction in the energy efficiency levels from 1979 to 2009.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:American Chemical Society (ACS) Kauppinen, Esko I.; Pyykönen, Jouni; Jokiniemi, Jorma; Aurela, Minna; Vakkilainen, Esa; Janka; Kauko; Mikkanen, Pirita;doi: 10.1021/ef980189o
Combustion aerosol measurement methods were introduced and applied for extensive ash formation studies at four operating recovery boilers in Finland. Ash particle mass size distributions determined with a Berner-type low-pressure impactor downstream the heat exchangers were clearly bimodal with the fine mode at about 2 μm and the coarse mode above 3 μm aerodynamic diameter. According to SEM images, fine ash mode consists of individual, almost spherical 0.3−0.7 μm alkali salt particles and of agglomerates with few primary particles of similar diameter and shape. The degree of fine mode primary particle sintering increased when increasing boiler heat load. Coarse mode includes large agglomerates with up to thousands of 0.3−0.7 μm alkali salt primary particles and spherical silica particles. Ash particle main component was sodium sulfate as determined with X-ray diffraction. Sodium-to-sulfur molar ratio of ash particles calculated on the analyses results with an ion chromatography decreased from the upper furnace sampling point to electrostatic precipitator inlet conditions, indicating sulfation of ash particles within the heat exchanger section. Chlorine in ash was bound as sodium chloride, no potassium chloride was detected with X-ray absorption fine structure spectroscopy. Furnace measurements showed that fine mode ash particles are formed already in the furnace via vapor condensation. The extents of release of 12% for Na, 24% for S, and 48% for Cl were determined on the basis of ion concentrations in fine particles and the mass balance calculation on the recovery boiler. Coarse particles observed downstream the heat exchangers are proposed to form mainly via entrainment of large agglomerates of fine ash particles deposited on the heat exchangers. The fine mode particle size was insensitive to the furnace conditions although the particle concentration increased when the furnace gas temperature increased. This and the increase of Na/S molar ratio in the particles indicates that Na volatilization increases with the increasing furnace temperature, whereas S release is less sensitive to the temperature increase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef980189o&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef980189o&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu