- home
- Advanced Search
- Energy Research
- other engineering and technologies
- SA
- PK
- BE
- Energy Research
- other engineering and technologies
- SA
- PK
- BE
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Wael H. Ahmed;Abstract Flow-accelerated corrosion (FAC) is a degradation mechanism that affects carbon steel piping in power plants. The failures and degradation due to FAC have necessitated numerous replacements in many power plants. Several computer codes around the world were developed as part of a systematic program or process to control FAC in power plant utilities. The typical plant model requires the input of the flow parameters, piping configuration and the plant water chemistry. The results on FAC rate are considered the key to proper selection of components for inspection. The lack of information on the effect of the upstream components located in the proximity limited the accuracy of the FAC prediction tools and hence will affect the accuracy in identifying potential inspection locations. In the present study 211 inspection data for 90° carbon steel elbows from several nuclear power plants were used to determine the effect of the proximity between two components on the FAC wear rate. The effect of the velocity as well as the distance between the elbows and the upstream components is discussed in the present analysis. Based on the analyzed trends obtained from the inspection data, significant increase in the wear rate of approximately 70% on average is identified to be due to the proximity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2009.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2009.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Zia Ud Din; Zia Ud Din; Zainal Alimuddin Zainal;Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Raazia Saher; Matasem Saleh; Madiha Anjum;doi: 10.3390/app132011263
Effective waste management is of paramount importance as it contributes significantly to environmental preservation, mitigates health hazards, and aids in the preservation of precious resources. Conversely, mishandling waste not only presents severe environmental risks but can also disrupt the balance of ecosystems and pose threats to biodiversity. The emission of carbon dioxide, methane, and greenhouse gases (GHGs) can constitute a significant factor in the progression of global warming and climate change, consequently giving rise to atmospheric pollution. This pollution, in turn, has the potential to exacerbate respiratory ailments, elevate the likelihood of cardiovascular disorders, and negatively impact overall public health. Hence, efficient management of trash is extremely crucial in any society. It requires integrating technology and innovative solutions, which can help eradicate this global issue. The internet of things (IoT) is a revolutionary communication paradigm with significant contributions to remote monitoring and control. IoT-based trash management aids remote garbage level monitoring but entails drawbacks like high installation and maintenance costs, increased electronic waste production (53 million metric tons in 2013), and substantial energy consumption for always-vigilant IoT devices. Our research endeavors to formulate a comprehensive model for an efficient and cost-effective waste collection system. It emphasizes the need for global commitment by policymakers, stakeholders, and civil society, working together to achieve a common goal. In order to mitigate the depletion of manpower, fuel resources, and time, our proposed method leverages quick response (QR) codes to enable the remote monitoring of waste bin capacity across diverse city locations. We propose to minimize the deployment of IoT devices, utilizing them only when absolutely necessary and thereby allocating their use exclusively to central garbage collection facilities. Our solution places the onus of monitoring garbage levels at the community level firmly on the shoulders of civilians, demonstrating that a critical aspect of any technology is its ability to interact and collaborate with humans. Within our framework, citizens will employ our proposed mobile application to scan QR codes affixed to waste bins, select the relevant garbage level, and transmit this data to the waste collection teams’ database. Subsequently, these teams will plan for optimized garbage collection procedures, considering parameters such as garbage volume and the most efficient collection routes aimed at minimizing both time and fuel consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app132011263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app132011263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 MalaysiaPublisher:MDPI AG Authors: Mohammad Omar Alfadil; Mukhtar A. Kassem; Kherun Nita Ali; Wael Alaghbari;doi: 10.3390/su14031135
The COVID-19 pandemic represents a type of force majeure that significantly and unexpectedly affected all human lifestyles. This study includes an integrative review of articles published across Scopus and Web of Science journals and compiled using the systematic review methodology based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement and VOSreview (visualization of similarities) software by defining keywords that include “construction industry” and “force majeure” and “environmental risks” as a starting point. Moreover, the research years and the countries covered by this research were determined in a second stage. Finally, the abstracts of selected studies were reviewed in order to extract factors similar to the pandemic conditions of COVID-19 along with the brief results of the research. Out of 6384 publications identified and 56 publications reporting, 20 studies fulfilled the inclusion criteria with full text. Based on our findings, there has been a continuous growth of publications on construction risk and environmental research since 2010. Malaysia had the greatest contribution to the research topic of the countries covered by the study, followed by Egypt. The Engineering, Construction and Architectural Management journal published the greatest number of publications related to the research topic. In this review, the most important previous studies are classified according to their handling of force majeure and environmental risks and the most important factors mentioned in these studies are identified. In addition, recommendations are made for dealing with the COVID-19 pandemic and for mitigating its effects on the construction industry in the Arab world and Malaysia. The results of this review will benefit researchers and construction companies alike in furthering research on reducing the risks of COVID-19 to construction projects and avoiding the significant economic loss that results from stopping these projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Center of Biomass and Renewable Energy Scientia Academy Authors: Ubaid Ur Rehman Zia; Hina Aslam; Muhammad Zulfiqar; Sibghat Ullah;In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.
International Journa... arrow_drop_down International Journal of Renewable Energy DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14710/ijred.2023.49927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Renewable Energy DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14710/ijred.2023.49927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Springer Science and Business Media LLC Authors: M. A. Al-Gwaiz;A method is presented for constructing fundamental solutions for the Helmholtz operators Δ ± k2 in Rn in terms of the fundamental singularity for the Laplacian Δ. The feasibility of representing a fundamental solution for Δ2 − k4 by forming convolutions of such solutions is also discussed.
Journal of King Saud... arrow_drop_down Journal of King Saud University: Engineering SciencesArticle . 1995 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of King Saud University: Engineering SciencesArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1018-3639(18)30634-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of King Saud... arrow_drop_down Journal of King Saud University: Engineering SciencesArticle . 1995 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of King Saud University: Engineering SciencesArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1018-3639(18)30634-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | Picsima SnugsUKRI| Picsima SnugsAuthors: Taher A. Nofal; Awad Musa;The European Physica... arrow_drop_down The European Physical Journal PlusArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjp/s13360-022-03493-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert The European Physica... arrow_drop_down The European Physical Journal PlusArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjp/s13360-022-03493-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Haiying Liu; Irfan Khan; Abdulrasheed Zakari; Majed Alharthi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.113238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu175 citations 175 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.113238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV J. De Ruyck; V.K. Verma; Svend Bram; Svend Bram; G. Gauthier;Abstract Emissions and efficiency of a pellet boiler (40 kW) at nominal load were compared with emissions and efficiency at reduced load, while fired with six biomass pellets. The pellets include reed canary grass ( Phalaris arundinacea ), pectin waste from citrus shells ( Citrus reticulata ), sunflower husk ( Helianthus annuus ), peat, wheat straw ( Triticum aestivum ) and wood pellets. The measurements of emissions comprised of carbon monoxide (CO), nitrogen oxides (NO x ), sulphur oxides (SO x ) and flue dust mass concentrations (using DIN plus and isokinetic sampling techniques). Emissions varied as a function of operational loads, for each type of pellets. The CO emissions were insignificant with reed canary grass (RCG), citrus pectin waste (CPW) and straw pellets at nominal load, however, at reduced load same pellets emitted 1.9, 4.0 and 7.4 times higher CO than wood pellets, respectively. Peat pellets emitted maximum CO at nominal load (4221.1 mgNm −3 , 12.6 times higher than wood pellets) however; at reduced load CO emission was insignificant. The highest NO x emissions were reported with CPW, which were 3.4 and 4.6 times higher than wood pellets at nominal load and reduced load, respectively. Dust emissions were highest with sunflower husk and lowest with RCG pellets, at both operational modes. The best performance was reported with wood pellets, followed by RCG and pectin pellets, however, wood pellets combustion emitted 1.7 and 2.0 times higher dust DIN plus than RCG at nominal and reduced loads, respectively. Not only fuel specific combustion optimization but also operational load specific optimization is essential for efficient use of agro-pellets in this type of boilers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2010.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2010.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Hisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; +2 AuthorsHisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; Hassan Amer Algaifi; Abdulaziz Alaskar;Alkali activated concretes have emerged as a prospective alternative to conventional concrete wherein diverse waste materials have been converted as valuable spin-offs. This paper presents a wide experimental study on the sustainability of employing waste sawdust as a fine/coarse aggregate replacement incorporating fly ash (FA) and granulated blast furnace slag (GBFS) to make high-performance cement-free lightweight concretes. Waste sawdust was replaced with aggregate at 0, 25, 50, 75, and 100 vol% incorporating alkali binder, including 70% FA and 30% GBFS. The blend was activated using a low sodium hydroxide concentration (2 M). The acoustic, thermal, and predicted engineering properties of concretes were evaluated, and the life cycle of various mixtures were calculated to investigate the sustainability of concrete. Besides this, by using the available experimental test database, an optimized Artificial Neural Network (ANN) was developed to estimate the mechanical properties of the designed alkali-activated mortar mixes depending on each sawdust volume percentage. Based on the findings, it was found that the sound absorption and reduction in thermal conductivity were enhanced with increasing sawdust contents. The compressive strengths of the specimens were found to be influenced by the sawdust content and the strength dropped from 65 to 48 MPa with the corresponding increase in the sawdust levels from 0% up to 100%. The results also showed that the emissions of carbon dioxide, energy utilization, and outlay tended to drop with an increase in the amount of sawdust and show more the lightweight concrete to be more sustainable for construction applications.
Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Wael H. Ahmed;Abstract Flow-accelerated corrosion (FAC) is a degradation mechanism that affects carbon steel piping in power plants. The failures and degradation due to FAC have necessitated numerous replacements in many power plants. Several computer codes around the world were developed as part of a systematic program or process to control FAC in power plant utilities. The typical plant model requires the input of the flow parameters, piping configuration and the plant water chemistry. The results on FAC rate are considered the key to proper selection of components for inspection. The lack of information on the effect of the upstream components located in the proximity limited the accuracy of the FAC prediction tools and hence will affect the accuracy in identifying potential inspection locations. In the present study 211 inspection data for 90° carbon steel elbows from several nuclear power plants were used to determine the effect of the proximity between two components on the FAC wear rate. The effect of the velocity as well as the distance between the elbows and the upstream components is discussed in the present analysis. Based on the analyzed trends obtained from the inspection data, significant increase in the wear rate of approximately 70% on average is identified to be due to the proximity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2009.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2009.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Zia Ud Din; Zia Ud Din; Zainal Alimuddin Zainal;Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Raazia Saher; Matasem Saleh; Madiha Anjum;doi: 10.3390/app132011263
Effective waste management is of paramount importance as it contributes significantly to environmental preservation, mitigates health hazards, and aids in the preservation of precious resources. Conversely, mishandling waste not only presents severe environmental risks but can also disrupt the balance of ecosystems and pose threats to biodiversity. The emission of carbon dioxide, methane, and greenhouse gases (GHGs) can constitute a significant factor in the progression of global warming and climate change, consequently giving rise to atmospheric pollution. This pollution, in turn, has the potential to exacerbate respiratory ailments, elevate the likelihood of cardiovascular disorders, and negatively impact overall public health. Hence, efficient management of trash is extremely crucial in any society. It requires integrating technology and innovative solutions, which can help eradicate this global issue. The internet of things (IoT) is a revolutionary communication paradigm with significant contributions to remote monitoring and control. IoT-based trash management aids remote garbage level monitoring but entails drawbacks like high installation and maintenance costs, increased electronic waste production (53 million metric tons in 2013), and substantial energy consumption for always-vigilant IoT devices. Our research endeavors to formulate a comprehensive model for an efficient and cost-effective waste collection system. It emphasizes the need for global commitment by policymakers, stakeholders, and civil society, working together to achieve a common goal. In order to mitigate the depletion of manpower, fuel resources, and time, our proposed method leverages quick response (QR) codes to enable the remote monitoring of waste bin capacity across diverse city locations. We propose to minimize the deployment of IoT devices, utilizing them only when absolutely necessary and thereby allocating their use exclusively to central garbage collection facilities. Our solution places the onus of monitoring garbage levels at the community level firmly on the shoulders of civilians, demonstrating that a critical aspect of any technology is its ability to interact and collaborate with humans. Within our framework, citizens will employ our proposed mobile application to scan QR codes affixed to waste bins, select the relevant garbage level, and transmit this data to the waste collection teams’ database. Subsequently, these teams will plan for optimized garbage collection procedures, considering parameters such as garbage volume and the most efficient collection routes aimed at minimizing both time and fuel consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app132011263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app132011263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 MalaysiaPublisher:MDPI AG Authors: Mohammad Omar Alfadil; Mukhtar A. Kassem; Kherun Nita Ali; Wael Alaghbari;doi: 10.3390/su14031135
The COVID-19 pandemic represents a type of force majeure that significantly and unexpectedly affected all human lifestyles. This study includes an integrative review of articles published across Scopus and Web of Science journals and compiled using the systematic review methodology based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement and VOSreview (visualization of similarities) software by defining keywords that include “construction industry” and “force majeure” and “environmental risks” as a starting point. Moreover, the research years and the countries covered by this research were determined in a second stage. Finally, the abstracts of selected studies were reviewed in order to extract factors similar to the pandemic conditions of COVID-19 along with the brief results of the research. Out of 6384 publications identified and 56 publications reporting, 20 studies fulfilled the inclusion criteria with full text. Based on our findings, there has been a continuous growth of publications on construction risk and environmental research since 2010. Malaysia had the greatest contribution to the research topic of the countries covered by the study, followed by Egypt. The Engineering, Construction and Architectural Management journal published the greatest number of publications related to the research topic. In this review, the most important previous studies are classified according to their handling of force majeure and environmental risks and the most important factors mentioned in these studies are identified. In addition, recommendations are made for dealing with the COVID-19 pandemic and for mitigating its effects on the construction industry in the Arab world and Malaysia. The results of this review will benefit researchers and construction companies alike in furthering research on reducing the risks of COVID-19 to construction projects and avoiding the significant economic loss that results from stopping these projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Center of Biomass and Renewable Energy Scientia Academy Authors: Ubaid Ur Rehman Zia; Hina Aslam; Muhammad Zulfiqar; Sibghat Ullah;In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.
International Journa... arrow_drop_down International Journal of Renewable Energy DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14710/ijred.2023.49927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Renewable Energy DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14710/ijred.2023.49927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Springer Science and Business Media LLC Authors: M. A. Al-Gwaiz;A method is presented for constructing fundamental solutions for the Helmholtz operators Δ ± k2 in Rn in terms of the fundamental singularity for the Laplacian Δ. The feasibility of representing a fundamental solution for Δ2 − k4 by forming convolutions of such solutions is also discussed.
Journal of King Saud... arrow_drop_down Journal of King Saud University: Engineering SciencesArticle . 1995 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of King Saud University: Engineering SciencesArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1018-3639(18)30634-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of King Saud... arrow_drop_down Journal of King Saud University: Engineering SciencesArticle . 1995 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of King Saud University: Engineering SciencesArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1018-3639(18)30634-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | Picsima SnugsUKRI| Picsima SnugsAuthors: Taher A. Nofal; Awad Musa;The European Physica... arrow_drop_down The European Physical Journal PlusArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjp/s13360-022-03493-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert The European Physica... arrow_drop_down The European Physical Journal PlusArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjp/s13360-022-03493-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Haiying Liu; Irfan Khan; Abdulrasheed Zakari; Majed Alharthi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.113238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu175 citations 175 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.113238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV J. De Ruyck; V.K. Verma; Svend Bram; Svend Bram; G. Gauthier;Abstract Emissions and efficiency of a pellet boiler (40 kW) at nominal load were compared with emissions and efficiency at reduced load, while fired with six biomass pellets. The pellets include reed canary grass ( Phalaris arundinacea ), pectin waste from citrus shells ( Citrus reticulata ), sunflower husk ( Helianthus annuus ), peat, wheat straw ( Triticum aestivum ) and wood pellets. The measurements of emissions comprised of carbon monoxide (CO), nitrogen oxides (NO x ), sulphur oxides (SO x ) and flue dust mass concentrations (using DIN plus and isokinetic sampling techniques). Emissions varied as a function of operational loads, for each type of pellets. The CO emissions were insignificant with reed canary grass (RCG), citrus pectin waste (CPW) and straw pellets at nominal load, however, at reduced load same pellets emitted 1.9, 4.0 and 7.4 times higher CO than wood pellets, respectively. Peat pellets emitted maximum CO at nominal load (4221.1 mgNm −3 , 12.6 times higher than wood pellets) however; at reduced load CO emission was insignificant. The highest NO x emissions were reported with CPW, which were 3.4 and 4.6 times higher than wood pellets at nominal load and reduced load, respectively. Dust emissions were highest with sunflower husk and lowest with RCG pellets, at both operational modes. The best performance was reported with wood pellets, followed by RCG and pectin pellets, however, wood pellets combustion emitted 1.7 and 2.0 times higher dust DIN plus than RCG at nominal and reduced loads, respectively. Not only fuel specific combustion optimization but also operational load specific optimization is essential for efficient use of agro-pellets in this type of boilers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2010.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2010.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Hisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; +2 AuthorsHisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; Hassan Amer Algaifi; Abdulaziz Alaskar;Alkali activated concretes have emerged as a prospective alternative to conventional concrete wherein diverse waste materials have been converted as valuable spin-offs. This paper presents a wide experimental study on the sustainability of employing waste sawdust as a fine/coarse aggregate replacement incorporating fly ash (FA) and granulated blast furnace slag (GBFS) to make high-performance cement-free lightweight concretes. Waste sawdust was replaced with aggregate at 0, 25, 50, 75, and 100 vol% incorporating alkali binder, including 70% FA and 30% GBFS. The blend was activated using a low sodium hydroxide concentration (2 M). The acoustic, thermal, and predicted engineering properties of concretes were evaluated, and the life cycle of various mixtures were calculated to investigate the sustainability of concrete. Besides this, by using the available experimental test database, an optimized Artificial Neural Network (ANN) was developed to estimate the mechanical properties of the designed alkali-activated mortar mixes depending on each sawdust volume percentage. Based on the findings, it was found that the sound absorption and reduction in thermal conductivity were enhanced with increasing sawdust contents. The compressive strengths of the specimens were found to be influenced by the sawdust content and the strength dropped from 65 to 48 MPa with the corresponding increase in the sawdust levels from 0% up to 100%. The results also showed that the emissions of carbon dioxide, energy utilization, and outlay tended to drop with an increase in the amount of sawdust and show more the lightweight concrete to be more sustainable for construction applications.
Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu