- home
- Advanced Search
- Energy Research
- SA
- Energy Research
- SA
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 SpainPublisher:MDPI AG Rinki Rani; Sushil Kumar; Omprakash Kaiwartya; Ahmad M. Khasawneh; Jaime Lloret; Mahmoud Ahmad Al-Khasawneh; Marwan Mahmoud; Alaa Abdulsalm Alarood;Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations.
CORE arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/5/1883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21051883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 54visibility views 54 download downloads 60 Powered bymore_vert CORE arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/5/1883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21051883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Mohammad Aljaidi; Omprakash Kaiwartya; Ghassan Samara; Ayoub Alsarhan; Mufti Mahmud; Sami M. Alenezi; Raed Alazaidah; Jaime Lloret;handle: 10251/212448
Recent developments and the widespread use of IoT-enabled technologies has led to the Research and Development (R&D) efforts in green communication. Traditional dynamic-source routing is one of the well-known protocols that was suggested to solve the information dissemination problem in an IoT environment. However, this protocol suffers from a high level of energy consumption in sensor-enabled device-to-device and device-to-base station communications. As a result, new information dissemination protocols should be developed to overcome the challenge of dynamic-source routing, and other similar protocols regarding green communication. In this context, a new energy-efficient routing protocol (EFRP) is proposed using the hybrid adopted heuristic techniques. In the densely deployed sensor-enabled IoT environment, an optimal information dissemination path for device-to-device and device-to-base station communication was identified using a hybrid genetic algorithm (GA) and the antlion optimization (ALO) algorithms. An objective function is formulated focusing on energy consumption-centric cost minimization. The evaluation results demonstrate that the proposed protocol outperforms the Greedy approach and the DSR protocol in terms of a range of green communication metrics. It was noticed that the number of alive sensor nodes in the experimental network increased by more than 26% compared to the other approaches and lessened energy consumption by about 33%. This leads to a prolonged IoT network lifetime, increased by about 25%. It is evident that the proposed scheme greatly improves the information dissemination efficiency of the IoT network, significantly increasing the network’s throughput.
Computers arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13100251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 42visibility views 42 download downloads 22 Powered bymore_vert Computers arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13100251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Amjad Rehman; Tanzila Saba; Khalid Haseeb; Souad Larabi Marie-Sainte; Jaime Lloret;doi: 10.3390/en14196414
handle: 10251/187827
Internet of Things (IoT) is a developing technology for supporting heterogeneous physical objects into smart things and improving the individuals living using wireless communication systems. Recently, many smart healthcare systems are based on the Internet of Medical Things (IoMT) to collect and analyze the data for infectious diseases, i.e., body fever, flu, COVID-19, shortness of breath, etc. with the least operation cost. However, the most important research challenges in such applications are storing the medical data on a secured cloud and make the disease diagnosis system more energy efficient. Additionally, the rapid explosion of IoMT technology has involved many cyber-criminals and continuous attempts to compromise medical devices with information loss and generating bogus certificates. Thus, the increase in modern technologies for healthcare applications based on IoMT, securing health data, and offering trusted communication against intruders is gaining much research attention. Therefore, this study aims to propose an energy-efficient IoT e-health model using artificial intelligence with homomorphic secret sharing, which aims to increase the maintainability of disease diagnosis systems and support trustworthy communication with the integration of the medical cloud. The proposed model is analyzed and proved its significance against relevant systems.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6414/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 47 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6414/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Sushil Kumar; Omprakash Kaiwartya; Manisha Rathee; Neeraj Kumar; Jaime Lloret;handle: 10251/187673
[EN] One of the major bottlenecks toward realizing IoT systems is the energy constraint of sensors. Prolonging network lifetime is a fundamental issue for implementing IoT systems. The energy optimization problem, being NP-hard in nature for scalable networks, has been addressed in the literature using traditional metaheuristic techniques. Quantum inspired metaheuristics have shown better performance than their traditional counterparts in solving such optimization problems in different domains. Toward this end, this article proposes a quantum inspired green communication framework for Energy Balancing in sensor enabled IoT systems (Q-EBIoT). First, an energy optimization model for sensor enabled IoT environments is presented, where energy consumption is derived as cost of the energy-oriented paths. Second, a quantum computing oriented solution is developed for the optimization problem focusing on energy centric solution representation, measurement, and rotation angle. The proposed solution is implemented to evaluate the comparative performance with the state-of-the-art techniques. The evaluation demonstrates the benefit of the proposed framework in terms of various energy-related metrics for sensor enabled IoT environments.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2020.2975823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 40visibility views 40 download downloads 169 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2020.2975823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Amjad Rehman; Tanzila Saba; Khalid Haseeb; Teg Alam; Jaime Lloret;doi: 10.3390/su141912185
handle: 10251/201832
In wireless multimedia networks, the Internet of Things (IoT) and visual sensors are used to interpret and exchange vast data in the form of images. The digital images are subsequently delivered to cloud systems via a sink node, where they are interacted with by smart communication systems using physical devices. Visual sensors are becoming a more significant part of digital systems and can help us live in a more intelligent world. However, for IoT-based data analytics, optimizing communications overhead by balancing the usage of energy and bandwidth resources is a new research challenge. Furthermore, protecting the IoT network’s data from anonymous attackers is critical. As a result, utilizing machine learning, this study proposes a mobile edge computing model with a secured cloud (MEC-Seccloud) for a sustainable Internet of Health Things (IoHT), providing real-time quality of service (QoS) for big data analytics while maintaining the integrity of green technologies. We investigate a reinforcement learning optimization technique to enable sensor interaction by examining metaheuristic methods and optimally transferring health-related information with the interaction of mobile edges. Furthermore, two-phase encryptions are used to guarantee data concealment and to provide secured wireless connectivity with cloud networks. The proposed model has shown considerable performance for various network metrics compared with earlier studies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 35 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SpainPublisher:MDPI AG Ahmad M. Khasawneh; Omprakash Kaiwartya; Jaime Lloret; Hayfa Y. Abuaddous; Laith Abualigah; Mohammad Al Shinwan; Mahmoud Ahmad Al-Khasawneh; Marwan Mahmoud; Rupak Kharel;In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/24/7278/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20247278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 58 Powered bymore_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/24/7278/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20247278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Amjad Rehman; Khalid Haseeb; Tanzila Saba; Jaime Lloret; Zara Ahmed;doi: 10.3390/su13169092
handle: 10251/188307
The Internet of Things (IoT) is an emerging technology and provides connectivity among physical objects with the support of 5G communication. In recent decades, there have been a lot of applications based on IoT technology for the sustainability of smart cities, such as farming, e-healthcare, education, smart homes, weather monitoring, etc. These applications communicate in a collaborative manner between embedded IoT devices and systematize daily routine tasks. In the literature, many solutions facilitate remote users to gather the observed data by accessing the stored information on the cloud network and lead to smart systems. However, most of the solutions raise significant research challenges regarding information sharing in mobile IoT networks and must be able to stabilize the performance of smart operations in terms of security and intelligence. Many solutions are based on 5G communication to support high user mobility and increase the connectivity among a huge number of IoT devices. However, such approaches lack user and data privacy against anonymous threats and incur resource costs. In this paper, we present a mobility support 5G architecture with real-time routing for sustainable smart cities that aims to decrease the loss of data against network disconnectivity and increase the reliability for 5G-based public healthcare networks. The proposed architecture firstly establishes a mutual relationship among the nodes and mobile sink with shared secret information and lightweight processing. Secondly, multi-secured levels are proposed to protect the interaction with smart transmission systems by increasing the trust threshold over the insecure channels. The conducted experiments are analyzed, and it is concluded that their performance significantly increases the information sustainability for mobile networks in terms of security and routing.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 30visibility views 30 download downloads 93 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 United KingdomPublisher:SAGE Publications Authors: Nabil Alrajeh; Shafiullah Khan; Jaime Lloret; Jonathan Loo;Energy efficiency is the main concern of research community while designing routing protocols for wireless sensor networks (WSNs). This concern can be addressed by using energy-harvesting scheme in routing protocols. In this paper, we propose a secure routing protocol that is based on cross layer design and energy-harvesting mechanism. It uses a distributed cluster-based security mechanism. In the cross-layer design, parameters are exchanged between different layers to ensure efficient use of energy. Energy-harvesting system is used to extract and store energy, which is used to take decisions for the node state and thus for the routing issues. Simulation results show that our routing protocol can perform better in many scenarios and in hostile attack-prone environment.
CORE arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2013 . Peer-reviewedLicense: SAGE TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/374796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 53visibility views 53 download downloads 68 Powered bymore_vert CORE arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2013 . Peer-reviewedLicense: SAGE TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/374796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Ibrahim Abunadi; Amjad Rehman; Khalid Haseeb; Lorena Parra; Jaime Lloret;In recent decades, networked smart devices and cutting-edge technology have been exploited in many applications for the improvement of agriculture. The deployment of smart sensors and intelligent farming techniques supports real-time information gathering for the agriculture sector and decreases the burden on farmers. Many solutions have been presented to automate the agriculture system using IoT networks; however, the identification of redundant data traffic is one of the most significant research problems. Additionally, farmers do not obtain the information they need in time, such as data on water pressure and soil conditions. Thus, these solutions consequently reduce the production rates and increase costs for farmers. Moreover, controlling all agricultural operations in a controlled manner should also be considered in developing intelligent solutions. Therefore, this study proposes a framework for a system that combines fog computing with smart farming and effectively controls network traffic. Firstly, the proposed framework efficiently monitors redundant information and avoids the inefficient use of communication bandwidth. It also controls the number of re-transmissions in the case of malicious actions and efficiently utilizes the network’s resources. Second, a trustworthy chain is built between agricultural sensors by utilizing the fog nodes to address security issues and increase reliability by preventing malicious communication. Through extensive simulation-based experiments, the proposed framework revealed an improved performance for energy efficiency, security, and network connectivity in comparison to other related works.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/17/6676/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22176676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 78visibility views 78 download downloads 161 Powered bymore_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/17/6676/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22176676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 SpainPublisher:MDPI AG Rinki Rani; Sushil Kumar; Omprakash Kaiwartya; Ahmad M. Khasawneh; Jaime Lloret; Mahmoud Ahmad Al-Khasawneh; Marwan Mahmoud; Alaa Abdulsalm Alarood;Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations.
CORE arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/5/1883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21051883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 54visibility views 54 download downloads 60 Powered bymore_vert CORE arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/5/1883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21051883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Mohammad Aljaidi; Omprakash Kaiwartya; Ghassan Samara; Ayoub Alsarhan; Mufti Mahmud; Sami M. Alenezi; Raed Alazaidah; Jaime Lloret;handle: 10251/212448
Recent developments and the widespread use of IoT-enabled technologies has led to the Research and Development (R&D) efforts in green communication. Traditional dynamic-source routing is one of the well-known protocols that was suggested to solve the information dissemination problem in an IoT environment. However, this protocol suffers from a high level of energy consumption in sensor-enabled device-to-device and device-to-base station communications. As a result, new information dissemination protocols should be developed to overcome the challenge of dynamic-source routing, and other similar protocols regarding green communication. In this context, a new energy-efficient routing protocol (EFRP) is proposed using the hybrid adopted heuristic techniques. In the densely deployed sensor-enabled IoT environment, an optimal information dissemination path for device-to-device and device-to-base station communication was identified using a hybrid genetic algorithm (GA) and the antlion optimization (ALO) algorithms. An objective function is formulated focusing on energy consumption-centric cost minimization. The evaluation results demonstrate that the proposed protocol outperforms the Greedy approach and the DSR protocol in terms of a range of green communication metrics. It was noticed that the number of alive sensor nodes in the experimental network increased by more than 26% compared to the other approaches and lessened energy consumption by about 33%. This leads to a prolonged IoT network lifetime, increased by about 25%. It is evident that the proposed scheme greatly improves the information dissemination efficiency of the IoT network, significantly increasing the network’s throughput.
Computers arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13100251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 42visibility views 42 download downloads 22 Powered bymore_vert Computers arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13100251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Amjad Rehman; Tanzila Saba; Khalid Haseeb; Souad Larabi Marie-Sainte; Jaime Lloret;doi: 10.3390/en14196414
handle: 10251/187827
Internet of Things (IoT) is a developing technology for supporting heterogeneous physical objects into smart things and improving the individuals living using wireless communication systems. Recently, many smart healthcare systems are based on the Internet of Medical Things (IoMT) to collect and analyze the data for infectious diseases, i.e., body fever, flu, COVID-19, shortness of breath, etc. with the least operation cost. However, the most important research challenges in such applications are storing the medical data on a secured cloud and make the disease diagnosis system more energy efficient. Additionally, the rapid explosion of IoMT technology has involved many cyber-criminals and continuous attempts to compromise medical devices with information loss and generating bogus certificates. Thus, the increase in modern technologies for healthcare applications based on IoMT, securing health data, and offering trusted communication against intruders is gaining much research attention. Therefore, this study aims to propose an energy-efficient IoT e-health model using artificial intelligence with homomorphic secret sharing, which aims to increase the maintainability of disease diagnosis systems and support trustworthy communication with the integration of the medical cloud. The proposed model is analyzed and proved its significance against relevant systems.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6414/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 47 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6414/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Sushil Kumar; Omprakash Kaiwartya; Manisha Rathee; Neeraj Kumar; Jaime Lloret;handle: 10251/187673
[EN] One of the major bottlenecks toward realizing IoT systems is the energy constraint of sensors. Prolonging network lifetime is a fundamental issue for implementing IoT systems. The energy optimization problem, being NP-hard in nature for scalable networks, has been addressed in the literature using traditional metaheuristic techniques. Quantum inspired metaheuristics have shown better performance than their traditional counterparts in solving such optimization problems in different domains. Toward this end, this article proposes a quantum inspired green communication framework for Energy Balancing in sensor enabled IoT systems (Q-EBIoT). First, an energy optimization model for sensor enabled IoT environments is presented, where energy consumption is derived as cost of the energy-oriented paths. Second, a quantum computing oriented solution is developed for the optimization problem focusing on energy centric solution representation, measurement, and rotation angle. The proposed solution is implemented to evaluate the comparative performance with the state-of-the-art techniques. The evaluation demonstrates the benefit of the proposed framework in terms of various energy-related metrics for sensor enabled IoT environments.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2020.2975823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 40visibility views 40 download downloads 169 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2020.2975823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Amjad Rehman; Tanzila Saba; Khalid Haseeb; Teg Alam; Jaime Lloret;doi: 10.3390/su141912185
handle: 10251/201832
In wireless multimedia networks, the Internet of Things (IoT) and visual sensors are used to interpret and exchange vast data in the form of images. The digital images are subsequently delivered to cloud systems via a sink node, where they are interacted with by smart communication systems using physical devices. Visual sensors are becoming a more significant part of digital systems and can help us live in a more intelligent world. However, for IoT-based data analytics, optimizing communications overhead by balancing the usage of energy and bandwidth resources is a new research challenge. Furthermore, protecting the IoT network’s data from anonymous attackers is critical. As a result, utilizing machine learning, this study proposes a mobile edge computing model with a secured cloud (MEC-Seccloud) for a sustainable Internet of Health Things (IoHT), providing real-time quality of service (QoS) for big data analytics while maintaining the integrity of green technologies. We investigate a reinforcement learning optimization technique to enable sensor interaction by examining metaheuristic methods and optimally transferring health-related information with the interaction of mobile edges. Furthermore, two-phase encryptions are used to guarantee data concealment and to provide secured wireless connectivity with cloud networks. The proposed model has shown considerable performance for various network metrics compared with earlier studies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 35 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SpainPublisher:MDPI AG Ahmad M. Khasawneh; Omprakash Kaiwartya; Jaime Lloret; Hayfa Y. Abuaddous; Laith Abualigah; Mohammad Al Shinwan; Mahmoud Ahmad Al-Khasawneh; Marwan Mahmoud; Rupak Kharel;In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/24/7278/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20247278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 58 Powered bymore_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/24/7278/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20247278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Amjad Rehman; Khalid Haseeb; Tanzila Saba; Jaime Lloret; Zara Ahmed;doi: 10.3390/su13169092
handle: 10251/188307
The Internet of Things (IoT) is an emerging technology and provides connectivity among physical objects with the support of 5G communication. In recent decades, there have been a lot of applications based on IoT technology for the sustainability of smart cities, such as farming, e-healthcare, education, smart homes, weather monitoring, etc. These applications communicate in a collaborative manner between embedded IoT devices and systematize daily routine tasks. In the literature, many solutions facilitate remote users to gather the observed data by accessing the stored information on the cloud network and lead to smart systems. However, most of the solutions raise significant research challenges regarding information sharing in mobile IoT networks and must be able to stabilize the performance of smart operations in terms of security and intelligence. Many solutions are based on 5G communication to support high user mobility and increase the connectivity among a huge number of IoT devices. However, such approaches lack user and data privacy against anonymous threats and incur resource costs. In this paper, we present a mobility support 5G architecture with real-time routing for sustainable smart cities that aims to decrease the loss of data against network disconnectivity and increase the reliability for 5G-based public healthcare networks. The proposed architecture firstly establishes a mutual relationship among the nodes and mobile sink with shared secret information and lightweight processing. Secondly, multi-secured levels are proposed to protect the interaction with smart transmission systems by increasing the trust threshold over the insecure channels. The conducted experiments are analyzed, and it is concluded that their performance significantly increases the information sustainability for mobile networks in terms of security and routing.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 30visibility views 30 download downloads 93 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 United KingdomPublisher:SAGE Publications Authors: Nabil Alrajeh; Shafiullah Khan; Jaime Lloret; Jonathan Loo;Energy efficiency is the main concern of research community while designing routing protocols for wireless sensor networks (WSNs). This concern can be addressed by using energy-harvesting scheme in routing protocols. In this paper, we propose a secure routing protocol that is based on cross layer design and energy-harvesting mechanism. It uses a distributed cluster-based security mechanism. In the cross-layer design, parameters are exchanged between different layers to ensure efficient use of energy. Energy-harvesting system is used to extract and store energy, which is used to take decisions for the node state and thus for the routing issues. Simulation results show that our routing protocol can perform better in many scenarios and in hostile attack-prone environment.
CORE arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2013 . Peer-reviewedLicense: SAGE TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/374796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 53visibility views 53 download downloads 68 Powered bymore_vert CORE arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2013 . Peer-reviewedLicense: SAGE TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/374796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Ibrahim Abunadi; Amjad Rehman; Khalid Haseeb; Lorena Parra; Jaime Lloret;In recent decades, networked smart devices and cutting-edge technology have been exploited in many applications for the improvement of agriculture. The deployment of smart sensors and intelligent farming techniques supports real-time information gathering for the agriculture sector and decreases the burden on farmers. Many solutions have been presented to automate the agriculture system using IoT networks; however, the identification of redundant data traffic is one of the most significant research problems. Additionally, farmers do not obtain the information they need in time, such as data on water pressure and soil conditions. Thus, these solutions consequently reduce the production rates and increase costs for farmers. Moreover, controlling all agricultural operations in a controlled manner should also be considered in developing intelligent solutions. Therefore, this study proposes a framework for a system that combines fog computing with smart farming and effectively controls network traffic. Firstly, the proposed framework efficiently monitors redundant information and avoids the inefficient use of communication bandwidth. It also controls the number of re-transmissions in the case of malicious actions and efficiently utilizes the network’s resources. Second, a trustworthy chain is built between agricultural sensors by utilizing the fog nodes to address security issues and increase reliability by preventing malicious communication. Through extensive simulation-based experiments, the proposed framework revealed an improved performance for energy efficiency, security, and network connectivity in comparison to other related works.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/17/6676/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22176676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 78visibility views 78 download downloads 161 Powered bymore_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/17/6676/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22176676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu