- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOOrganization
- Energy Research
- SA
- Energy Research
- SA
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Centre for Evaluation in Education and Science (CEON/CEES) Authors: Narayanan Natarajan; Mahbub Alam; Saad Rehman; A Mohd Mohandes;doi: 10.5937/fme2003566r
Globally, the wind power capacities are growing every passing year, which is an indicative of social and commercial acceptance of this technology by a larger section of the populations. In Indian perspective, the wind power capacities are also increasing with annual additions of new capacities and most of the development work is taking place in the southern part and that too in Tamil Nadu state. Research work in the area of accurate wind power assessment is being conducted to optimize the utilization of wind power and at the same time efforts are being exerted to enhance the operation and maintenance capabilities of the local skilled and semi-skilled work force. This study utilizes 38 years of hourly mean wind speed data from seven locations for providing the accurate wind power assessment and understanding the longitudinal behavior of its characteristics. The wind speed is found to be increasing with decreasing latitudes and having lesser variation in wind direction fluctuations, simply means conversing wind direction to narrower bands. Kanyakumari is identified as the most probable wind power deployment site with annual energy yield of 227.55 MWh and capacity factor of 34% followed by Vedaranyam, and Thoothukudi, as second and third priority sites with respective annual yields of 223.36 MWh and 218.73 MWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2003566r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2003566r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Centre for Evaluation in Education and Science (CEON/CEES) Authors: Shafiqur Rehman; Nandhini S. Shiva; Narayanan Natarajan; M. Vasudevan;doi: 10.5937/fme2101244n
An accurate estimate of wind resource assessment is essential for the identification of potential site for wind farm development. The hourly average wind speed measured at 50 m above ground level over a period of 39 years (1980-2018) from 25 locations in Tamil Nadu, India have been used in this study. The annual and seasonal wind speed trends are analyzed using linear and Mann-Kendall statistical methods. The annual energy yield, and net capacity factor are obtained for the chosen wind turbine with 2 Mega Watt rated power. As per the linear trend analysis, Chennai and Kanchipuram possess a significantly decreasing trend, while Nagercoil, Thoothukudi, and Tirunelveli show an increasing trend. Mann-Kendall trend analysis shows that cities located in the southern peninsula and in the vicinity of the coastal regions have significant potential for wind energy development. Moreover, a majority of the cities show an increasing trend in the autumn season due to the influence of the retreating monsoons which is accompanied with heavy winds. The mean wind follows an oscillating pattern throughout the year at all the locations. Based on the net annual energy output, Nagercoil, Thoothukudi and Nagapattinam are found to be the most suitable locations for wind power deployment in Tamil Nadu, followed by Cuddalore, Kumbakonam, Thanjavur and Tirunelveli.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2101244n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2101244n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:Springer Science and Business Media LLC Shafiqur Rehman; Narayanan Natarajan; Mohamed A. Mohandes; Joshua P. Meyer; Md Mahbub Alam; Luai M. Alhems;The objective of this work is to understand the fluctuating nature of wind speed characteristics on different time scales and to find the long-term annual trends of wind speed at different locations in South Africa. The hourly average mean wind speed values over a period of 20 years are used to achieve the set objective. Wind speed frequency, directional availability of maximum mean wind speed, total energy, annual energy yield and plant capacity factors are determined for seven locations situated both inland and along the coast of South Africa. The highest mean wind speed (6.01 m/s) is obtained in Port Elizabeth and the lowest mean wind speed (3.86 m/s) is obtained in Bloemfontein. Wind speed increased with increasing latitudes at coastal sites (Cape Town, Durban, East London and Port Elizabeth), while the reverse trend was observed at inland locations (Bloemfontein, Johannesburg and Pretoria). Noticeable annual changes and relative wind speed values are found at coastal locations compared to inland sites. The energy pattern factor, also known as the cube factor, varied between a minimum of 1.489 in Pretoria and a maximum of 1.858 in Cape Town. Higher energy pattern factor (EPF) values correspond to sites with fair to good wind power potential. Finally, Cape Town, East London and Port Elizabeth are found to be good sites for wind power deployments based on the wind speed and power characteristics presented in this study.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14276-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14276-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Narayanan Natarajan; Mangottiri Vasudevan; Shafiqur Rehman;pmid: 33988843
The optimal design and performance monitoring of wind farms depend on the precise assessment of spatial and temporal distribution of wind speed. The aim of this research is to investigate the appropriateness of nine popular probability distribution models (exponential, gamma, generalised extreme value, inverse Gaussian, Kumaraswamy, log-logistic, lognormal, Nakagami, and Weibull) for the assessment of wind speed distribution (WSD) at 10 sites situated at topographically distinct locations in Tamil Nadu, India, based on 39 years of data. The results suggest that a single distribution cannot produce best fit for all the stations. On an individual level, the generalised extreme value distribution provided the most suitable fit for majority of the stations, followed by the Kumaraswamy distribution. The Kumaraswamy distribution has performed well even if the WSD of the station is negatively skewed. Hence, based on the ranking and performance consistency, the Kumaraswamy distribution can be preferred irrespective of the topographical heterogeneity of the stations.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14315-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14315-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Shafiqur Rehman; Narayanan Natarajan; Mangottiri Vasudevan; Abdul Baseer Mohammed; +3 AuthorsShafiqur Rehman; Narayanan Natarajan; Mangottiri Vasudevan; Abdul Baseer Mohammed; Mohammed A. Mohandes; Firoz Khan; Fahad A. Al-Sulaiman;pmid: 36279064
To combat the adverse environmental effects of fossil fuel burning for power generation and to conserve it for strategic use, new, clean, and renewable energy sources are being utilized for power generation. The study presents techno-economic analysis of a grid-connected solar photovoltaic (PV) power plant to partially meet the energy consumption of the people of Kuttiady village in Kerala, India. The proposed 2315.5 kW installed capacity PV is found to be feasible for the village and can produce 3878.3 MWh of energy annually while the demand is 4044.86 MWh at a plant capacity factor of 19.1% and cost of energy of 290.73 $/MWh. The performance of the proposed PV plant measured in terms of final yield (4.59 h), reference yield (5.64 h), and performance ratio (82%) is compatible and even higher with many such plants in India and other countries. Economic sensitivity analysis is also performed by varying the interest, discount, and inflation rates to check their effect on cost of energy, benefit cost ratio, and payback period. As the interest and discount rates decrease, the cost of energy and payback period also decreases while benefit cost ratio increases. The proposed plant can help in avoiding around 785 tons of greenhouse gases entering the local atmosphere of the Kuttiady village.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-23731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-23731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:SAGE Publications Authors: Shafiqur Rehman; Narayanan Natarajan; Mangottiri Vasudevan; Luai M Alhems;Wind energy is one of the abundant, cheap and fast-growing renewable energy sources whose intensive extraction potential is still in immature stage in India. This study aims at the determination and evaluation of wind energy potential of three cities located at different elevations in the state of Tamil Nadu, India. The historical records of wind speed, direction, temperature and pressure were collected for three South Indian cities, namely Chennai, Erode and Coimbatore over a period of 38 years (1980-2017). The mean wind power density was observed to be highest at Chennai (129 W/m2) and lowest at Erode (76 W/m2) and the corresponding mean energy content was highest for Chennai (1129 kWh/m2/year) and lowest at Erode (666 kWh/m2/year). Considering the events of high energy-carrying winds at Chennai, Erode and Coimbatore, maximum wind power density were estimated to be 185 W/m2, 190 W/m2 and 234 W/m2, respectively. The annual average net energy yield and annual average net capacity factor were selected as the representative parameters for expressing strategic wind energy potential at geographically distinct locations having significant variation in wind speed distribution. Based on the analysis, Chennai is found to be the most suitable site for wind energy production followed by Coimbatore and Erode.
Energy Exploration &... arrow_drop_down Energy Exploration & ExploitationArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598719875276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Exploration &... arrow_drop_down Energy Exploration & ExploitationArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598719875276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Centre for Evaluation in Education and Science (CEON/CEES) Authors: Narayanan Natarajan; Mahbub Alam; Saad Rehman; A Mohd Mohandes;doi: 10.5937/fme2003566r
Globally, the wind power capacities are growing every passing year, which is an indicative of social and commercial acceptance of this technology by a larger section of the populations. In Indian perspective, the wind power capacities are also increasing with annual additions of new capacities and most of the development work is taking place in the southern part and that too in Tamil Nadu state. Research work in the area of accurate wind power assessment is being conducted to optimize the utilization of wind power and at the same time efforts are being exerted to enhance the operation and maintenance capabilities of the local skilled and semi-skilled work force. This study utilizes 38 years of hourly mean wind speed data from seven locations for providing the accurate wind power assessment and understanding the longitudinal behavior of its characteristics. The wind speed is found to be increasing with decreasing latitudes and having lesser variation in wind direction fluctuations, simply means conversing wind direction to narrower bands. Kanyakumari is identified as the most probable wind power deployment site with annual energy yield of 227.55 MWh and capacity factor of 34% followed by Vedaranyam, and Thoothukudi, as second and third priority sites with respective annual yields of 223.36 MWh and 218.73 MWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2003566r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2003566r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Centre for Evaluation in Education and Science (CEON/CEES) Authors: Shafiqur Rehman; Nandhini S. Shiva; Narayanan Natarajan; M. Vasudevan;doi: 10.5937/fme2101244n
An accurate estimate of wind resource assessment is essential for the identification of potential site for wind farm development. The hourly average wind speed measured at 50 m above ground level over a period of 39 years (1980-2018) from 25 locations in Tamil Nadu, India have been used in this study. The annual and seasonal wind speed trends are analyzed using linear and Mann-Kendall statistical methods. The annual energy yield, and net capacity factor are obtained for the chosen wind turbine with 2 Mega Watt rated power. As per the linear trend analysis, Chennai and Kanchipuram possess a significantly decreasing trend, while Nagercoil, Thoothukudi, and Tirunelveli show an increasing trend. Mann-Kendall trend analysis shows that cities located in the southern peninsula and in the vicinity of the coastal regions have significant potential for wind energy development. Moreover, a majority of the cities show an increasing trend in the autumn season due to the influence of the retreating monsoons which is accompanied with heavy winds. The mean wind follows an oscillating pattern throughout the year at all the locations. Based on the net annual energy output, Nagercoil, Thoothukudi and Nagapattinam are found to be the most suitable locations for wind power deployment in Tamil Nadu, followed by Cuddalore, Kumbakonam, Thanjavur and Tirunelveli.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2101244n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5937/fme2101244n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:Springer Science and Business Media LLC Shafiqur Rehman; Narayanan Natarajan; Mohamed A. Mohandes; Joshua P. Meyer; Md Mahbub Alam; Luai M. Alhems;The objective of this work is to understand the fluctuating nature of wind speed characteristics on different time scales and to find the long-term annual trends of wind speed at different locations in South Africa. The hourly average mean wind speed values over a period of 20 years are used to achieve the set objective. Wind speed frequency, directional availability of maximum mean wind speed, total energy, annual energy yield and plant capacity factors are determined for seven locations situated both inland and along the coast of South Africa. The highest mean wind speed (6.01 m/s) is obtained in Port Elizabeth and the lowest mean wind speed (3.86 m/s) is obtained in Bloemfontein. Wind speed increased with increasing latitudes at coastal sites (Cape Town, Durban, East London and Port Elizabeth), while the reverse trend was observed at inland locations (Bloemfontein, Johannesburg and Pretoria). Noticeable annual changes and relative wind speed values are found at coastal locations compared to inland sites. The energy pattern factor, also known as the cube factor, varied between a minimum of 1.489 in Pretoria and a maximum of 1.858 in Cape Town. Higher energy pattern factor (EPF) values correspond to sites with fair to good wind power potential. Finally, Cape Town, East London and Port Elizabeth are found to be good sites for wind power deployments based on the wind speed and power characteristics presented in this study.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14276-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14276-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Narayanan Natarajan; Mangottiri Vasudevan; Shafiqur Rehman;pmid: 33988843
The optimal design and performance monitoring of wind farms depend on the precise assessment of spatial and temporal distribution of wind speed. The aim of this research is to investigate the appropriateness of nine popular probability distribution models (exponential, gamma, generalised extreme value, inverse Gaussian, Kumaraswamy, log-logistic, lognormal, Nakagami, and Weibull) for the assessment of wind speed distribution (WSD) at 10 sites situated at topographically distinct locations in Tamil Nadu, India, based on 39 years of data. The results suggest that a single distribution cannot produce best fit for all the stations. On an individual level, the generalised extreme value distribution provided the most suitable fit for majority of the stations, followed by the Kumaraswamy distribution. The Kumaraswamy distribution has performed well even if the WSD of the station is negatively skewed. Hence, based on the ranking and performance consistency, the Kumaraswamy distribution can be preferred irrespective of the topographical heterogeneity of the stations.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14315-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-14315-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Shafiqur Rehman; Narayanan Natarajan; Mangottiri Vasudevan; Abdul Baseer Mohammed; +3 AuthorsShafiqur Rehman; Narayanan Natarajan; Mangottiri Vasudevan; Abdul Baseer Mohammed; Mohammed A. Mohandes; Firoz Khan; Fahad A. Al-Sulaiman;pmid: 36279064
To combat the adverse environmental effects of fossil fuel burning for power generation and to conserve it for strategic use, new, clean, and renewable energy sources are being utilized for power generation. The study presents techno-economic analysis of a grid-connected solar photovoltaic (PV) power plant to partially meet the energy consumption of the people of Kuttiady village in Kerala, India. The proposed 2315.5 kW installed capacity PV is found to be feasible for the village and can produce 3878.3 MWh of energy annually while the demand is 4044.86 MWh at a plant capacity factor of 19.1% and cost of energy of 290.73 $/MWh. The performance of the proposed PV plant measured in terms of final yield (4.59 h), reference yield (5.64 h), and performance ratio (82%) is compatible and even higher with many such plants in India and other countries. Economic sensitivity analysis is also performed by varying the interest, discount, and inflation rates to check their effect on cost of energy, benefit cost ratio, and payback period. As the interest and discount rates decrease, the cost of energy and payback period also decreases while benefit cost ratio increases. The proposed plant can help in avoiding around 785 tons of greenhouse gases entering the local atmosphere of the Kuttiady village.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-23731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-23731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:SAGE Publications Authors: Shafiqur Rehman; Narayanan Natarajan; Mangottiri Vasudevan; Luai M Alhems;Wind energy is one of the abundant, cheap and fast-growing renewable energy sources whose intensive extraction potential is still in immature stage in India. This study aims at the determination and evaluation of wind energy potential of three cities located at different elevations in the state of Tamil Nadu, India. The historical records of wind speed, direction, temperature and pressure were collected for three South Indian cities, namely Chennai, Erode and Coimbatore over a period of 38 years (1980-2017). The mean wind power density was observed to be highest at Chennai (129 W/m2) and lowest at Erode (76 W/m2) and the corresponding mean energy content was highest for Chennai (1129 kWh/m2/year) and lowest at Erode (666 kWh/m2/year). Considering the events of high energy-carrying winds at Chennai, Erode and Coimbatore, maximum wind power density were estimated to be 185 W/m2, 190 W/m2 and 234 W/m2, respectively. The annual average net energy yield and annual average net capacity factor were selected as the representative parameters for expressing strategic wind energy potential at geographically distinct locations having significant variation in wind speed distribution. Based on the analysis, Chennai is found to be the most suitable site for wind energy production followed by Coimbatore and Erode.
Energy Exploration &... arrow_drop_down Energy Exploration & ExploitationArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598719875276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Exploration &... arrow_drop_down Energy Exploration & ExploitationArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598719875276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu