- home
- Advanced Search
Filters
Clear All- Energy Research
- SE
- Chinese
- Publikationer från KTH
- Energy Research
- SE
- Chinese
- Publikationer från KTH
description Publicationkeyboard_double_arrow_right Article 2014 SwedenPublisher:KTH, Kärnfysik Authors: Yuan, C.; Qi, Chong;Background: Nuclear shell model is widely applied in the studies of light and medium-mass nuclei. The ground and excited state energies, electromagnetic properties and β decay properties of these nuclei can be well understood by solving many body Schrödinger equation with effective shell-model Hamiltonian in the model space. Purpose: The aim is to introduce the framework of shell model and its application in nuclei. Methods: The nuclear shell model is used to study properties of selected nuclei. Results: In psd region, a new effective shell-model Hamiltonian is introduced. The neutron drip-line of C, N, and O isotopes can be given with such Hamiltonian. The nuclei around A=20 with weakly bound proton are investigated through a modified shell model Hamiltonian. N=Z nucleus is good for studying the effect of proton-neutron pair. 46V and 50Mn have both T=0 and 1 rotational band. 92Pd can be understood under a spin alignment isoscalar scheme of proton-neutron pair. Mirror nuclei around N=Z in fp region can be used for the investigation of charge symmetry breaking effect of nuclear force. Conclusion: Nuclear shell model is proper and useful for the description of light and medium-mass nuclei. QC 20150313
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::044708bdcee2e93e9617cb872fc91e64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::044708bdcee2e93e9617cb872fc91e64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2014 SwedenPublisher:KTH, Kärnfysik Authors: Yuan, C.; Qi, Chong;Background: Nuclear shell model is widely applied in the studies of light and medium-mass nuclei. The ground and excited state energies, electromagnetic properties and β decay properties of these nuclei can be well understood by solving many body Schrödinger equation with effective shell-model Hamiltonian in the model space. Purpose: The aim is to introduce the framework of shell model and its application in nuclei. Methods: The nuclear shell model is used to study properties of selected nuclei. Results: In psd region, a new effective shell-model Hamiltonian is introduced. The neutron drip-line of C, N, and O isotopes can be given with such Hamiltonian. The nuclei around A=20 with weakly bound proton are investigated through a modified shell model Hamiltonian. N=Z nucleus is good for studying the effect of proton-neutron pair. 46V and 50Mn have both T=0 and 1 rotational band. 92Pd can be understood under a spin alignment isoscalar scheme of proton-neutron pair. Mirror nuclei around N=Z in fp region can be used for the investigation of charge symmetry breaking effect of nuclear force. Conclusion: Nuclear shell model is proper and useful for the description of light and medium-mass nuclei. QC 20150313
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::044708bdcee2e93e9617cb872fc91e64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::044708bdcee2e93e9617cb872fc91e64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu