- home
- Advanced Search
- Energy Research
- Open Source
- Embargo
- 13. Climate action
- SE
- PH
- TW
- Energy Research
- Open Source
- Embargo
- 13. Climate action
- SE
- PH
- TW
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Jul 2022 FrancePublisher:Elsevier BV Patrick Rousset; Mark Daniel G. de Luna; Arjay A. Arpia; Arjay A. Arpia; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Su Shiung Lam; Su Shiung Lam;Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.
Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu270 citations 270 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Javier Lezaun; James Palmer; Emily Rodriguez; Simon Haikola; Rob Bellamy; Rob Bellamy; Adrian Lefvert; Mathias Fridahl; Stefan Grönkvist; Anders Hansson;Abstract Bioenergy with carbon capture and storage (BECCS) plays a central role in scenario pathways that limit global warming in line with the objectives of the Paris Agreement. Yet deliberate policy efforts to incentivise BECCS—whether through amending existing climate policies or introducing entirely new ones—remain rare. In this paper, we contend that BECCS must be incentivised responsibly, through policy-making processes which account for diverse and geographically varying societal values and interests. More specifically, we make the case for responsible incentivisation by undertaking a comparative analysis of stakeholder attitudes to four idealised policy scenarios for BECCS, including representatives of government, business, nongovernmental and academic communities, in the UK and Sweden. The scenarios were: business as usual; international policy reform; national BECCS policy; and national policy for negative emissions technologies. Based on our findings, we recommend that policymakers 1) recognise the need to develop new incentives and make enabling reforms to existing policy instruments; 2) consider the risk of mitigation deterrence in their real world (and not abstracted) contexts; 3) employ multi-instrument approaches to incentivisation that do not overly rely on carbon pricing or 4) force a choice between technology specific or technology neutral policies; and 5) attend to the diversity of stakeholder and wider public perspectives that will ultimately determine the success—or failure—of their policy designs.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional RepositoryEnvironmental Science & PolicyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional RepositoryEnvironmental Science & PolicyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Emerald E. Lisa F. Schipper; Gregor Vulturius; Gregor Vulturius; Frank Thomalla; Karlee Johnson; Marion Davis;Purpose The purpose of this paper is to advance the dialogue between the disaster risk reduction (DRR) and adaptation community by investigating their differences, similarities and potential synergies. The paper examines how DRR and adaptation can inform development to tackle the underlying drivers of disaster risk. Design/methodology/approach Based on a risk-based approach to the management of climate variability and change, the paper draws from a critical review of the literature on DRR and adaptation. The study finds that known and emerging risk from disasters continues to increase dramatically in many parts of the world, and that climate change is a key driver behind it. The authors also find that underlying causes of social vulnerability are still not adequately addressed in policy or practice. Linking DRR and adaptation is also complicated by different purposes and perspectives, fragmented knowledge, institutions and policy and poor stakeholder coordination. Findings The author’s analysis suggests that future work in DRR and adaptation should put a much greater emphasis on reducing vulnerability to environmental hazards, if there is truly a desire to tackle the underlying drivers of disaster and climate risks. Originality/value This will require coherent political action on DRR and adaptation aimed at addressing faulty development processes that are the main causes of growing vulnerability. The study concludes with a first look on the new Sendai Framework for Disaster Risk Reduction and how it aims to connect with adaptation and development.
Oxford University Re... arrow_drop_down International Journal of Disaster Resilience in the Built EnvironmentArticle . 2016 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijdrbe-03-2015-0014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down International Journal of Disaster Resilience in the Built EnvironmentArticle . 2016 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijdrbe-03-2015-0014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Jul 2022 FrancePublisher:Elsevier BV Patrick Rousset; Mark Daniel G. de Luna; Arjay A. Arpia; Arjay A. Arpia; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Su Shiung Lam; Su Shiung Lam;Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.
Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu270 citations 270 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Javier Lezaun; James Palmer; Emily Rodriguez; Simon Haikola; Rob Bellamy; Rob Bellamy; Adrian Lefvert; Mathias Fridahl; Stefan Grönkvist; Anders Hansson;Abstract Bioenergy with carbon capture and storage (BECCS) plays a central role in scenario pathways that limit global warming in line with the objectives of the Paris Agreement. Yet deliberate policy efforts to incentivise BECCS—whether through amending existing climate policies or introducing entirely new ones—remain rare. In this paper, we contend that BECCS must be incentivised responsibly, through policy-making processes which account for diverse and geographically varying societal values and interests. More specifically, we make the case for responsible incentivisation by undertaking a comparative analysis of stakeholder attitudes to four idealised policy scenarios for BECCS, including representatives of government, business, nongovernmental and academic communities, in the UK and Sweden. The scenarios were: business as usual; international policy reform; national BECCS policy; and national policy for negative emissions technologies. Based on our findings, we recommend that policymakers 1) recognise the need to develop new incentives and make enabling reforms to existing policy instruments; 2) consider the risk of mitigation deterrence in their real world (and not abstracted) contexts; 3) employ multi-instrument approaches to incentivisation that do not overly rely on carbon pricing or 4) force a choice between technology specific or technology neutral policies; and 5) attend to the diversity of stakeholder and wider public perspectives that will ultimately determine the success—or failure—of their policy designs.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional RepositoryEnvironmental Science & PolicyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional RepositoryEnvironmental Science & PolicyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Emerald E. Lisa F. Schipper; Gregor Vulturius; Gregor Vulturius; Frank Thomalla; Karlee Johnson; Marion Davis;Purpose The purpose of this paper is to advance the dialogue between the disaster risk reduction (DRR) and adaptation community by investigating their differences, similarities and potential synergies. The paper examines how DRR and adaptation can inform development to tackle the underlying drivers of disaster risk. Design/methodology/approach Based on a risk-based approach to the management of climate variability and change, the paper draws from a critical review of the literature on DRR and adaptation. The study finds that known and emerging risk from disasters continues to increase dramatically in many parts of the world, and that climate change is a key driver behind it. The authors also find that underlying causes of social vulnerability are still not adequately addressed in policy or practice. Linking DRR and adaptation is also complicated by different purposes and perspectives, fragmented knowledge, institutions and policy and poor stakeholder coordination. Findings The author’s analysis suggests that future work in DRR and adaptation should put a much greater emphasis on reducing vulnerability to environmental hazards, if there is truly a desire to tackle the underlying drivers of disaster and climate risks. Originality/value This will require coherent political action on DRR and adaptation aimed at addressing faulty development processes that are the main causes of growing vulnerability. The study concludes with a first look on the new Sendai Framework for Disaster Risk Reduction and how it aims to connect with adaptation and development.
Oxford University Re... arrow_drop_down International Journal of Disaster Resilience in the Built EnvironmentArticle . 2016 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijdrbe-03-2015-0014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down International Journal of Disaster Resilience in the Built EnvironmentArticle . 2016 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijdrbe-03-2015-0014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu