- home
- Advanced Search
- Energy Research
- Open Access
- TH
- Energies
- Energy Research
- Open Access
- TH
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Kanabadee Srisomboon; Yutthna Sroulsrun; Wilaiporn Lee;doi: 10.3390/en14082259
Cognitive radio is expected to be implemented in smart grids since it presents high reliability, high accuracy and low transmission time by utilizing licensed bands opportunistically. Shadowing environment affects the performance of channel availability detection of local spectrum sensing since it occurs occasionally. Therefore, the cooperative spectrum sensing is encouraged to be used for addressing shadowing issues. The principle cooperative spectrum sensing techniques suffer from unreliable local information from secondary users (SUs) who are encountered by the shadowing effect. Then, several alternative methods, adaptive majority rule and improved weight algorithm (IMA) is proposed by taking the SUs reliability into account. However, the unreliable SUs are still considered according to the algorithm. Therefore, in this paper, we propose an adaptive multi-criteria thresholding (AMT) to determine the channel availability according to the SUs reliability. The main contribution of AMT is three-fold. First, the new reliable weight calculation is proposed by utilizing analytic hierarchy process (AHP) under three major criteria. Second, AMT is flexible to the number of SUs since it adapts the decision weight on the optimal number of SUs according to the reliable SUs. Third, the shadowing issue is addressed by taking only reliable SUs into account.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Nattapon Panmala; Thanapong Suwanasri; Cattareeya Suwanasri;doi: 10.3390/en15249393
This paper proposes a comprehensive procedure to assess the condition of gas insulated switchgear (GIS) equipment by using the conventional weight and score method and introducing a conditional factor to improve the accuracy of the health index evaluation. Generally, the inspection and testing of GIS components are conducted according to manufacturer recommendations and guidelines in the international standards. However, this raw data has not been simplified and systematically processed for condition assessment. The score and weight technique are applied to transform the physical condition according to visible and measurable aging to numerical values in terms of component and bay health index values. The accuracy of the obtained health index has been improved by a conditional factor, which considers invisible aging factors, such as age, number of switching operations, degree of satisfactory operation, obsolescence, and adequacy of the interrupting rating. Here, a condition evaluation procedure has been developed and compared with the fuzzy logic method and the health index dominant score technique with satisfactory results. Subsequently, the proposed procedure has been developed as web application software to evaluate 175 bays of GIS in both 115 and 230 kV networks of an independent power producer supplying electricity of 3094 MW to a large industrial estate in Thailand. Eight GIS bays showed moderate or poor condition and the proper actions were assigned to prevent their failure. The software is in use in practice as a decision support tool to effectively manage the maintenance tasks and to improve supply reliability.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9393/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9393/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Noppada Teera-achariyakul; Dulpichet Rerkpreedapong;doi: 10.3390/en15145172
Current electric utilities must achieve reliability enhancement of considerable distribution feeders with an economical budget. Thus, optimal preventive maintenance planning is required to balance the benefits and costs of maintenance programs. In this research, the proposed method determines the time-varying failure rate of each feeder to evaluate the likelihood of future interruptions. Meanwhile, the consequences of feeder interruptions are estimated using interruption energy rates, customer-minutes of interruption, and total kVA of service areas. Then, the risk is assessed and later treated as an opportunity for mitigating the customer interruption costs by planned preventive maintenance tasks. Subsequently, cooperative game theory is exploited in the proposed method to locate a decent balance between the benefits of reliability enhancement and the costs required for preventive maintenance programs. The effectiveness of the proposed method is illustrated through case studies of large power distribution networks of 12 service regions, including 3558 medium-voltage distribution feeders. The preventive maintenance plans resulting from the proposed method present the best compromise of benefits and costs compared with the conventional approach that requires a pre-specified maintenance budget.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 MalaysiaPublisher:MDPI AG Bijendra Shrestha; Jetsada Posom; Pimpen Pornchaloempong; Panmanas Sirisomboon; Bim Prasad Shrestha; Hidayah Ariffin;doi: 10.3390/en17061338
This study focuses on the investigation and comparison of combustion characteristic parameters and combustion performance indices between fast-growing trees and agricultural residues as biomass sources. The investigation is conducted through direct combustion in an air environment using a thermogravimetric analyzer (TGA). Additionally, partial least squares regression (PLSR)-based models were developed to assess combustion performance indices via near-infrared spectroscopy (NIRS), serving as a non-destructive alternative method. The results obtained through the TGA reveal that, specifically, fast-growing trees display higher average ignition temperature (227 °C) and burnout temperature (521 °C) in comparison to agricultural residues, which exhibit the values of 218 °C and 515 °C, respectively. Therefore, fast-growing trees are comparatively difficult to ignite, but sustain combustion over extended periods, yielding higher temperatures. However, despite fast-growing trees having a high ignition index (Di) and burnout index (Df), the comprehensive combustion performance (Si) and flammability index (Ci) of agricultural residue are higher, indicating the latter possess enhanced thermal and combustion reactivity, coupled with improved combustion stability. Five distinct PLSR-based models were developed using 115 biomass samples for both chip and ground forms, spanning the wavenumber range of 3595–12,489 cm−1. The optimal model was selected by evaluating the coefficients of determination in the prediction set (R2P), root mean square error of prediction (RMSEP), and RPD values. The results suggest that the proposed model for Df, obtained through GA-PLSR using the first derivative (D1), and Si, achieved through full-PLSR with MSC, both in ground biomass, is usable for most applications, including research. The model yielded, respectively, an R2P, RMSEP, and RPD, which are 0.8426, 0.4968 wt.% min⁻4, and 2.5; and 0.8808, 0.1566 wt.%2 min⁻2 °C⁻3, and 3.1. The remaining models (Di in chip and ground, Df, and Si in chip, and Ci in chip and ground biomass) are primarily applicable only for rough screening purposes. However, including more representative samples and exploring a more suitable machine learning algorithm are essential for updating the model to achieve a better nondestructive assessment of biomass combustion behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Ngoc Thien Le; Watit Benjapolakul;doi: 10.3390/en12163158
Rooftop photovoltaics (PV) systems are attracting residential customers due to their renewable energy contribution to houses and to green cities. However, customers also need a comprehensive understanding of system design configuration and the related energy return from the system in order to support their PV investment. In this study, the rooftop PV systems from many high-volume installed PV systems countries and regions were collected to evaluate the lifetime energy yield of these systems based on machine learning techniques. Then, we obtained an association between the lifetime energy yield and technical configuration details of PV such as rated solar panel power, number of panels, rated inverter power, and number of inverters. Our findings reveal that the variability of PV lifetime energy is partly explained by the difference in PV system configuration. Indeed, our machine learning model can explain approximately 31 % ( 95 % confidence interval: 29–38%) of the variant energy efficiency of the PV system, given the configuration and components of the PV system. Our study has contributed useful knowledge to support the planning and design of a rooftop PV system such as PV financial modeling and PV investment decision.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3158/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3158/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Molla Hossain Lipu; Tahia Karim; Shaheer Ansari; Md. Miah; Md. Rahman; Sheikh Meraj; Rajvikram Elavarasan; Raghavendra Vijayaraghavan;doi: 10.3390/en16010023
Real-time battery SOX estimation including the state of charge (SOC), state of energy (SOE), and state of health (SOH) is the crucial evaluation indicator to assess the performance of automotive battery management systems (BMSs). Recently, intelligent models in terms of deep learning (DL) have received massive attention in electric vehicle (EV) BMS applications due to their improved generalization performance and strong computation capability to work under different conditions. However, estimation of accurate and robust SOC, SOH, and SOE in real-time is challenging since they are internal battery parameters and depend on the battery’s materials, chemical reactions, and aging as well as environmental temperature settings. Therefore, the goal of this review is to present a comprehensive explanation of various DL approaches for battery SOX estimation, highlighting features, configurations, datasets, battery chemistries, targets, results, and contributions. Various DL methods are critically discussed, outlining advantages, disadvantages, and research gaps. In addition, various open challenges, issues, and concerns are investigated to identify existing concerns, limitations, and challenges. Finally, future suggestions and guidelines are delivered toward accurate and robust SOX estimation for sustainable operation and management in EV operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011Publisher:MDPI AG Authors: Nuwong Chollacoop; Peerawat Saisirirat; Tuenjai Fukuda; Atsushi Fukuda;doi: 10.3390/en4010108
Ethanol is conventionally used as a blend with gasoline due to its similar properties, especially the octane number. However, ethanol has also been explored and used as a diesel substitute. While a low-blend of ethanol with diesel is possible with use of an emulsifier additive, a high-blend of ethanol with diesel may require major adjustment of compression-ignition (CI) diesel engines. Since dedicated CI engines are commercially available for a high-blend ethanol in diesel (ED95), a fuel mixture comprised of 95% ethanol and 5% additive, this technology offers an option for an oil-importing country like Thailand to reduce its fossil import by use of its own indigenous bio-ethanol fuel. Among many strong campaigns on ethanol utilization in the transportation sector under Thailand’s Alternative Energy Strategic Plan (2008–2022), the Thai Ministry of Energy has, for the first time, conducted a demonstration project with ethanol (ED95) buses on the Thai road system. The current investigation thus aims to assess and quantify the impact of using this ED95 technology to reduce fossil diesel consumption by adjusting the commercially available energy demand model called the Long range Energy Alternatives Planning system (LEAP). For this purpose, first, the necessary statistical data in the Thai transportation sector were gathered and analyzed to construct the predicative energy demand model. Then, scenario analyses were conducted to assess the benefit of ED95 technology on the basis of energy efficiency and greenhouse gas emission reduction.
Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/1/108/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4010108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/1/108/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4010108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Nonthawat Khortsriwong; Promphak Boonraksa; Terapong Boonraksa; Thipwan Fangsuwannarak; +3 AuthorsNonthawat Khortsriwong; Promphak Boonraksa; Terapong Boonraksa; Thipwan Fangsuwannarak; Asada Boonsrirat; Watcharakorn Pinthurat; Boonruang Marungsri;doi: 10.3390/en16052119
Recently, deep learning techniques have become popular and are widely employed in several research areas, such as optimization, pattern recognition, object identification, and forecasting, due to the advanced development of computer programming technologies. A significant number of renewable energy sources (RESs) as environmentally friendly sources, especially solar photovoltaic (PV) sources, have been integrated into modern power systems. However, the PV source is highly fluctuating and difficult to predict accurately for short-term PV output power generation, leading to ineffective system planning and affecting energy security. Compared to conventional predictive approaches, such as linear regression, predictive-based deep learning methods are promising in predicting short-term PV power generation with high accuracy. This paper investigates the performance of several well-known deep learning techniques to forecast short-term PV power generation in the real-site floating PV power plant of 1.5 MWp capacity at Suranaree University of Technology Hospital, Thailand. The considered deep learning techniques include single models (RNN, CNN, LSTM, GRU, BiLSTM, and BiGRU) and hybrid models (CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU). Five-minute resolution data from the real floating PV power plant is used to train and test the deep learning models. Accuracy indices of MAE, MAPE, and RMSE are applied to quantify errors between actual and forecasted values obtained from the different deep learning techniques. The obtained results show that, with the same training dataset, the performance of the deep learning models differs when testing under different weather conditions and time horizons. The CNN-BiGRU model offers the best performance for one-day PV forecasting, while the BiLSTM model is the most preferable for one-week PV forecasting.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2119/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2119/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Hafezali Iqbal Hussain; Muhammad Haseeb; Manuela Tvaronavičienė; Leonardus W. W. Mihardjo; +1 AuthorsHafezali Iqbal Hussain; Muhammad Haseeb; Manuela Tvaronavičienė; Leonardus W. W. Mihardjo; Kittisak Jermsittiparsert;doi: 10.3390/en17122922
To allow the original publication to be better understood [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17122922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17122922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Homket, Yuttana; Sutheravut, Pongthep; Nima, Sawpheeyah;doi: 10.3390/en14175219
In 2015, the National Energy Policy Council (NEPC) approved the latest Alternative Energy Development Plan (AEDP) 2015–2036, targeting electricity generation from biomass, biogas, and municipal solid waste by 2036 towards the Thailand 4.0 policy. The small biomass power plants are intensively promoted, contributing to many more public concerns. Therefore, this study provided new insight using the readiness and resilience in the communities near the biomass power plant generation in Southern Thailand. The community readiness model (CRM) and community health impact assessment (CHIA) were adopted using mixed methods during January–November 2019. A total of 999 respondents replied to the questionnaires, 153 informants were interviewed, and the panel was discussed and analyzed by descriptive statistics and content analysis. Findings illustrated that all stakeholder sectors strengthened community-driven development based on the average community readiness (3.01 ± 0.11) in a vague awareness stage, only with participation in information giving (75.38%) and having an impact pain point score of 7.64 ± 0.54, which was a highly intense level used to develop the public policy towards biomass power plants. Recent advanced community tools offered new insights for the first time about community strategic plans for sustainable biomass power generation, to achieve community security and values of democracy in Southern Thailand.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Kanabadee Srisomboon; Yutthna Sroulsrun; Wilaiporn Lee;doi: 10.3390/en14082259
Cognitive radio is expected to be implemented in smart grids since it presents high reliability, high accuracy and low transmission time by utilizing licensed bands opportunistically. Shadowing environment affects the performance of channel availability detection of local spectrum sensing since it occurs occasionally. Therefore, the cooperative spectrum sensing is encouraged to be used for addressing shadowing issues. The principle cooperative spectrum sensing techniques suffer from unreliable local information from secondary users (SUs) who are encountered by the shadowing effect. Then, several alternative methods, adaptive majority rule and improved weight algorithm (IMA) is proposed by taking the SUs reliability into account. However, the unreliable SUs are still considered according to the algorithm. Therefore, in this paper, we propose an adaptive multi-criteria thresholding (AMT) to determine the channel availability according to the SUs reliability. The main contribution of AMT is three-fold. First, the new reliable weight calculation is proposed by utilizing analytic hierarchy process (AHP) under three major criteria. Second, AMT is flexible to the number of SUs since it adapts the decision weight on the optimal number of SUs according to the reliable SUs. Third, the shadowing issue is addressed by taking only reliable SUs into account.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2259/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Nattapon Panmala; Thanapong Suwanasri; Cattareeya Suwanasri;doi: 10.3390/en15249393
This paper proposes a comprehensive procedure to assess the condition of gas insulated switchgear (GIS) equipment by using the conventional weight and score method and introducing a conditional factor to improve the accuracy of the health index evaluation. Generally, the inspection and testing of GIS components are conducted according to manufacturer recommendations and guidelines in the international standards. However, this raw data has not been simplified and systematically processed for condition assessment. The score and weight technique are applied to transform the physical condition according to visible and measurable aging to numerical values in terms of component and bay health index values. The accuracy of the obtained health index has been improved by a conditional factor, which considers invisible aging factors, such as age, number of switching operations, degree of satisfactory operation, obsolescence, and adequacy of the interrupting rating. Here, a condition evaluation procedure has been developed and compared with the fuzzy logic method and the health index dominant score technique with satisfactory results. Subsequently, the proposed procedure has been developed as web application software to evaluate 175 bays of GIS in both 115 and 230 kV networks of an independent power producer supplying electricity of 3094 MW to a large industrial estate in Thailand. Eight GIS bays showed moderate or poor condition and the proper actions were assigned to prevent their failure. The software is in use in practice as a decision support tool to effectively manage the maintenance tasks and to improve supply reliability.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9393/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9393/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Noppada Teera-achariyakul; Dulpichet Rerkpreedapong;doi: 10.3390/en15145172
Current electric utilities must achieve reliability enhancement of considerable distribution feeders with an economical budget. Thus, optimal preventive maintenance planning is required to balance the benefits and costs of maintenance programs. In this research, the proposed method determines the time-varying failure rate of each feeder to evaluate the likelihood of future interruptions. Meanwhile, the consequences of feeder interruptions are estimated using interruption energy rates, customer-minutes of interruption, and total kVA of service areas. Then, the risk is assessed and later treated as an opportunity for mitigating the customer interruption costs by planned preventive maintenance tasks. Subsequently, cooperative game theory is exploited in the proposed method to locate a decent balance between the benefits of reliability enhancement and the costs required for preventive maintenance programs. The effectiveness of the proposed method is illustrated through case studies of large power distribution networks of 12 service regions, including 3558 medium-voltage distribution feeders. The preventive maintenance plans resulting from the proposed method present the best compromise of benefits and costs compared with the conventional approach that requires a pre-specified maintenance budget.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 MalaysiaPublisher:MDPI AG Bijendra Shrestha; Jetsada Posom; Pimpen Pornchaloempong; Panmanas Sirisomboon; Bim Prasad Shrestha; Hidayah Ariffin;doi: 10.3390/en17061338
This study focuses on the investigation and comparison of combustion characteristic parameters and combustion performance indices between fast-growing trees and agricultural residues as biomass sources. The investigation is conducted through direct combustion in an air environment using a thermogravimetric analyzer (TGA). Additionally, partial least squares regression (PLSR)-based models were developed to assess combustion performance indices via near-infrared spectroscopy (NIRS), serving as a non-destructive alternative method. The results obtained through the TGA reveal that, specifically, fast-growing trees display higher average ignition temperature (227 °C) and burnout temperature (521 °C) in comparison to agricultural residues, which exhibit the values of 218 °C and 515 °C, respectively. Therefore, fast-growing trees are comparatively difficult to ignite, but sustain combustion over extended periods, yielding higher temperatures. However, despite fast-growing trees having a high ignition index (Di) and burnout index (Df), the comprehensive combustion performance (Si) and flammability index (Ci) of agricultural residue are higher, indicating the latter possess enhanced thermal and combustion reactivity, coupled with improved combustion stability. Five distinct PLSR-based models were developed using 115 biomass samples for both chip and ground forms, spanning the wavenumber range of 3595–12,489 cm−1. The optimal model was selected by evaluating the coefficients of determination in the prediction set (R2P), root mean square error of prediction (RMSEP), and RPD values. The results suggest that the proposed model for Df, obtained through GA-PLSR using the first derivative (D1), and Si, achieved through full-PLSR with MSC, both in ground biomass, is usable for most applications, including research. The model yielded, respectively, an R2P, RMSEP, and RPD, which are 0.8426, 0.4968 wt.% min⁻4, and 2.5; and 0.8808, 0.1566 wt.%2 min⁻2 °C⁻3, and 3.1. The remaining models (Di in chip and ground, Df, and Si in chip, and Ci in chip and ground biomass) are primarily applicable only for rough screening purposes. However, including more representative samples and exploring a more suitable machine learning algorithm are essential for updating the model to achieve a better nondestructive assessment of biomass combustion behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Ngoc Thien Le; Watit Benjapolakul;doi: 10.3390/en12163158
Rooftop photovoltaics (PV) systems are attracting residential customers due to their renewable energy contribution to houses and to green cities. However, customers also need a comprehensive understanding of system design configuration and the related energy return from the system in order to support their PV investment. In this study, the rooftop PV systems from many high-volume installed PV systems countries and regions were collected to evaluate the lifetime energy yield of these systems based on machine learning techniques. Then, we obtained an association between the lifetime energy yield and technical configuration details of PV such as rated solar panel power, number of panels, rated inverter power, and number of inverters. Our findings reveal that the variability of PV lifetime energy is partly explained by the difference in PV system configuration. Indeed, our machine learning model can explain approximately 31 % ( 95 % confidence interval: 29–38%) of the variant energy efficiency of the PV system, given the configuration and components of the PV system. Our study has contributed useful knowledge to support the planning and design of a rooftop PV system such as PV financial modeling and PV investment decision.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3158/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3158/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Molla Hossain Lipu; Tahia Karim; Shaheer Ansari; Md. Miah; Md. Rahman; Sheikh Meraj; Rajvikram Elavarasan; Raghavendra Vijayaraghavan;doi: 10.3390/en16010023
Real-time battery SOX estimation including the state of charge (SOC), state of energy (SOE), and state of health (SOH) is the crucial evaluation indicator to assess the performance of automotive battery management systems (BMSs). Recently, intelligent models in terms of deep learning (DL) have received massive attention in electric vehicle (EV) BMS applications due to their improved generalization performance and strong computation capability to work under different conditions. However, estimation of accurate and robust SOC, SOH, and SOE in real-time is challenging since they are internal battery parameters and depend on the battery’s materials, chemical reactions, and aging as well as environmental temperature settings. Therefore, the goal of this review is to present a comprehensive explanation of various DL approaches for battery SOX estimation, highlighting features, configurations, datasets, battery chemistries, targets, results, and contributions. Various DL methods are critically discussed, outlining advantages, disadvantages, and research gaps. In addition, various open challenges, issues, and concerns are investigated to identify existing concerns, limitations, and challenges. Finally, future suggestions and guidelines are delivered toward accurate and robust SOX estimation for sustainable operation and management in EV operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011Publisher:MDPI AG Authors: Nuwong Chollacoop; Peerawat Saisirirat; Tuenjai Fukuda; Atsushi Fukuda;doi: 10.3390/en4010108
Ethanol is conventionally used as a blend with gasoline due to its similar properties, especially the octane number. However, ethanol has also been explored and used as a diesel substitute. While a low-blend of ethanol with diesel is possible with use of an emulsifier additive, a high-blend of ethanol with diesel may require major adjustment of compression-ignition (CI) diesel engines. Since dedicated CI engines are commercially available for a high-blend ethanol in diesel (ED95), a fuel mixture comprised of 95% ethanol and 5% additive, this technology offers an option for an oil-importing country like Thailand to reduce its fossil import by use of its own indigenous bio-ethanol fuel. Among many strong campaigns on ethanol utilization in the transportation sector under Thailand’s Alternative Energy Strategic Plan (2008–2022), the Thai Ministry of Energy has, for the first time, conducted a demonstration project with ethanol (ED95) buses on the Thai road system. The current investigation thus aims to assess and quantify the impact of using this ED95 technology to reduce fossil diesel consumption by adjusting the commercially available energy demand model called the Long range Energy Alternatives Planning system (LEAP). For this purpose, first, the necessary statistical data in the Thai transportation sector were gathered and analyzed to construct the predicative energy demand model. Then, scenario analyses were conducted to assess the benefit of ED95 technology on the basis of energy efficiency and greenhouse gas emission reduction.
Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/1/108/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4010108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/1/108/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4010108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Nonthawat Khortsriwong; Promphak Boonraksa; Terapong Boonraksa; Thipwan Fangsuwannarak; +3 AuthorsNonthawat Khortsriwong; Promphak Boonraksa; Terapong Boonraksa; Thipwan Fangsuwannarak; Asada Boonsrirat; Watcharakorn Pinthurat; Boonruang Marungsri;doi: 10.3390/en16052119
Recently, deep learning techniques have become popular and are widely employed in several research areas, such as optimization, pattern recognition, object identification, and forecasting, due to the advanced development of computer programming technologies. A significant number of renewable energy sources (RESs) as environmentally friendly sources, especially solar photovoltaic (PV) sources, have been integrated into modern power systems. However, the PV source is highly fluctuating and difficult to predict accurately for short-term PV output power generation, leading to ineffective system planning and affecting energy security. Compared to conventional predictive approaches, such as linear regression, predictive-based deep learning methods are promising in predicting short-term PV power generation with high accuracy. This paper investigates the performance of several well-known deep learning techniques to forecast short-term PV power generation in the real-site floating PV power plant of 1.5 MWp capacity at Suranaree University of Technology Hospital, Thailand. The considered deep learning techniques include single models (RNN, CNN, LSTM, GRU, BiLSTM, and BiGRU) and hybrid models (CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU). Five-minute resolution data from the real floating PV power plant is used to train and test the deep learning models. Accuracy indices of MAE, MAPE, and RMSE are applied to quantify errors between actual and forecasted values obtained from the different deep learning techniques. The obtained results show that, with the same training dataset, the performance of the deep learning models differs when testing under different weather conditions and time horizons. The CNN-BiGRU model offers the best performance for one-day PV forecasting, while the BiLSTM model is the most preferable for one-week PV forecasting.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2119/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2119/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Hafezali Iqbal Hussain; Muhammad Haseeb; Manuela Tvaronavičienė; Leonardus W. W. Mihardjo; +1 AuthorsHafezali Iqbal Hussain; Muhammad Haseeb; Manuela Tvaronavičienė; Leonardus W. W. Mihardjo; Kittisak Jermsittiparsert;doi: 10.3390/en17122922
To allow the original publication to be better understood [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17122922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17122922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Homket, Yuttana; Sutheravut, Pongthep; Nima, Sawpheeyah;doi: 10.3390/en14175219
In 2015, the National Energy Policy Council (NEPC) approved the latest Alternative Energy Development Plan (AEDP) 2015–2036, targeting electricity generation from biomass, biogas, and municipal solid waste by 2036 towards the Thailand 4.0 policy. The small biomass power plants are intensively promoted, contributing to many more public concerns. Therefore, this study provided new insight using the readiness and resilience in the communities near the biomass power plant generation in Southern Thailand. The community readiness model (CRM) and community health impact assessment (CHIA) were adopted using mixed methods during January–November 2019. A total of 999 respondents replied to the questionnaires, 153 informants were interviewed, and the panel was discussed and analyzed by descriptive statistics and content analysis. Findings illustrated that all stakeholder sectors strengthened community-driven development based on the average community readiness (3.01 ± 0.11) in a vague awareness stage, only with participation in information giving (75.38%) and having an impact pain point score of 7.64 ± 0.54, which was a highly intense level used to develop the public policy towards biomass power plants. Recent advanced community tools offered new insights for the first time about community strategic plans for sustainable biomass power generation, to achieve community security and values of democracy in Southern Thailand.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu