- home
- Advanced Search
- Energy Research
- 15. Life on land
- 2. Zero hunger
- BE
- UA
- University of California System
- Energy Research
- 15. Life on land
- 2. Zero hunger
- BE
- UA
- University of California System
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, GermanyPublisher:Wiley Funded by:EC | LUC4CEC| LUC4CCarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 298 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 United States, Chile, Switzerland, Ireland, Germany, ChilePublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa RicaMirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 11download downloads 11 Powered bymore_vert CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United States, BelgiumPublisher:American Geophysical Union (AGU) Sierra, Carlos A; Trumbore, Susan E; Davidson, Eric A; Vicca, Sara; Janssens, I;doi: 10.1002/2014ms000358
handle: 10067/1240850151162165141
AbstractThe sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem‐level experiments manipulating soil temperature and water content simultaneously.
Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Advances in Modeling Earth SystemsArticle . 2015Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014ms000358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 233 citations 233 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Advances in Modeling Earth SystemsArticle . 2015Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014ms000358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Frontiers Media SA Authors: Singer, Esther; Bonnette, Jason; Woyke, Tanja; Juenger, Thomas E;Panicum represents a large genus of many North American prairie grass species. These include switchgrass (Panicum virgatum), a biofuel crop candidate with wide geographic range, as well as Panicum hallii, a close relative to switchgrass, which serves as a model system for the study of Panicum genetics due to its diploid genome and short growth cycles. For the advancement of switchgrass as a biofuel crop, it is essential to understand host microbiome interactions, which can be impacted by plant genetics and environmental factors inducing ecotype-specific phenotypic traits. We here compared rhizosphere and root endosphere bacterial communities of upland and lowland P. virgatum and P. hallii genotypes planted at two sites in Texas. Our analysis shows that sampling site predominantly contributed to bacterial community variance in the rhizosphere, however, impacted root endosphere bacterial communities much less. Instead we observed a relatively large core endophytic microbiome dominated by ubiquitously root-colonizing bacterial genera Streptomyces, Pseudomonas, and Bradyrhizobium. Endosphere communities displayed comparable diversity and conserved community structures across genotypes of both Panicum species. Functional insights into interactions between P. hallii and its root endophyte microbiome could hence inform testable hypotheses that are relevant for the improvement of switchgrass as a biofuel crop.
Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2019.02181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2019.02181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, France, Brazil, Brazil, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | The UK Earth system model..., EC | IMBALANCE-P, ARC | ARC Centres of Excellence... +1 projectsUKRI| The UK Earth system modelling project. ,EC| IMBALANCE-P ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,EC| LUC4CSönke Zaehle; Anja Rammig; Florian Hofhansl; Ying-Ping Wang; David M. Lapola; Lucia Fuchslueger; Lucia Fuchslueger; Vanessa Haverd; Adriana Grandis; Sabrina Garcia; Carlos A. Quesada; Richard J. Norby; Celso von Randow; Felix Leung; Felix Leung; Lina M. Mercado; Qing Zhu; Mingkai Jiang; Anthony P. Walker; Bart Kruijt; Belinda E. Medlyn; Katrin Fleischer; Martin G. De Kauwe; Oscar J. Valverde-Barrantes; Xiaojuan Yang; Bernard Pak; Daniel S. Goll; Daniel S. Goll; Karst J. Schaap; Tomas F. Domingues; Jennifer A. Holm;Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO2-induced biomass carbon growth by about 50% to 79 ± 63 g C m−2 yr−1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m−2 yr−1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, and to what extent these processes can be upregulated under elevated CO2.
Nature Geoscience arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 189 citations 189 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 186 Powered bymore_vert Nature Geoscience arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United States, Netherlands, Australia, Italy, AustraliaPublisher:Oxford University Press (OUP) Funded by:, NWO | Release and Catch! Using ..., ARC | Discovery Projects - Gran... +4 projects[no funder available] ,NWO| Release and Catch! Using a light-controlled probe to uncover the signaling interactome of phosphatidic acid in the plant cold response. ,ARC| Discovery Projects - Grant ID: DP190102725 ,NSF| Collaborative Research: MRA: Scaling from Traits to Forest Ecosystem Fluxes and Responses to Climate Change, from Stand to Continent ,EC| BoostCrop ,ARC| Discovery Projects - Grant ID: DP220102785 ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMESPaul E Verslues; Julia Bailey-Serres; Craig Brodersen; Thomas N Buckley; Lucio Conti; Alexander Christmann; José R Dinneny; Erwin Grill; Scott Hayes; Robert W Heckman; Po-Kai Hsu; Thomas E Juenger; Paloma Mas; Teun Munnik; Hilde Nelissen; Lawren Sack; Julian I Schroeder; Christa Testerink; Stephen D Tyerman; Taishi Umezawa; Philip A Wigge;Abstract We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Archivio Istituziona... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 3 Powered bymore_vert Archivio Istituziona... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 France, Germany, United States, France, FrancePublisher:Springer Science and Business Media LLC Laurent Li; Tao Li; Josep Peñuelas; Yao Huang; Chuang Zhao; S. L. Piao; S. L. Piao; Joshua Elliott; Senthold Asseng; Philippe Ciais; Philippe Ciais; Christoph Müller; Ivan A. Janssens; Xuhui Wang; Chenzhi Wang;Responses of global crop yields to warmer temperatures are fundamental to sustainable development under climate change but remain uncertain. Here, we combined a global dataset of field warming experiments (48 sites) for wheat, maize, rice and soybean with gridded global crop models to produce field-data-constrained estimates on responses of crop yield to changes in temperature (ST) with the emergent-constraint approach. Our constrained estimates show with >95% probability that warmer temperatures would reduce yields for maize (−7.1 ± 2.8% K−1), rice (−5.6 ± 2.0% K−1) and soybean (−10.6 ± 5.8% K−1). For wheat, ST was 89% likely to be negative (−2.9 ± 2.3% K−1). Uncertainties associated with modelled ST were reduced by 12–54% for the four crops but data constraints do not allow for further disentangling ST of different crop types. A key implication for impact assessments after the Paris Agreement is that direct warming impacts alone will reduce major crop yields by 3–13% under 2 K global warming without considering CO2 fertilization effects and adaptations. Even if warming was limited to 1.5 K, all major producing countries would still face notable warming-induced yield reduction. This yield loss could be partially offset by projected benefits from elevated CO2, whose magnitude remains uncertain, and highlights the challenge to compensate it by autonomous adaptation. Global responses of crops to warmer temperatures will affect agricultural sustainability. This study of maize, rice, soybean and wheat projects yield reductions of 3–13% under 2 °C warming.
Hyper Article en Lig... arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0569-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 121 citations 121 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0569-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, GermanyPublisher:Wiley Funded by:EC | LUC4CEC| LUC4CCarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 298 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 United States, Chile, Switzerland, Ireland, Germany, ChilePublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa RicaMirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 11download downloads 11 Powered bymore_vert CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United States, BelgiumPublisher:American Geophysical Union (AGU) Sierra, Carlos A; Trumbore, Susan E; Davidson, Eric A; Vicca, Sara; Janssens, I;doi: 10.1002/2014ms000358
handle: 10067/1240850151162165141
AbstractThe sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem‐level experiments manipulating soil temperature and water content simultaneously.
Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Advances in Modeling Earth SystemsArticle . 2015Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014ms000358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 233 citations 233 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Advances in Modeling Earth SystemsArticle . 2015Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014ms000358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Frontiers Media SA Authors: Singer, Esther; Bonnette, Jason; Woyke, Tanja; Juenger, Thomas E;Panicum represents a large genus of many North American prairie grass species. These include switchgrass (Panicum virgatum), a biofuel crop candidate with wide geographic range, as well as Panicum hallii, a close relative to switchgrass, which serves as a model system for the study of Panicum genetics due to its diploid genome and short growth cycles. For the advancement of switchgrass as a biofuel crop, it is essential to understand host microbiome interactions, which can be impacted by plant genetics and environmental factors inducing ecotype-specific phenotypic traits. We here compared rhizosphere and root endosphere bacterial communities of upland and lowland P. virgatum and P. hallii genotypes planted at two sites in Texas. Our analysis shows that sampling site predominantly contributed to bacterial community variance in the rhizosphere, however, impacted root endosphere bacterial communities much less. Instead we observed a relatively large core endophytic microbiome dominated by ubiquitously root-colonizing bacterial genera Streptomyces, Pseudomonas, and Bradyrhizobium. Endosphere communities displayed comparable diversity and conserved community structures across genotypes of both Panicum species. Functional insights into interactions between P. hallii and its root endophyte microbiome could hence inform testable hypotheses that are relevant for the improvement of switchgrass as a biofuel crop.
Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2019.02181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2019.02181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, France, Brazil, Brazil, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | The UK Earth system model..., EC | IMBALANCE-P, ARC | ARC Centres of Excellence... +1 projectsUKRI| The UK Earth system modelling project. ,EC| IMBALANCE-P ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,EC| LUC4CSönke Zaehle; Anja Rammig; Florian Hofhansl; Ying-Ping Wang; David M. Lapola; Lucia Fuchslueger; Lucia Fuchslueger; Vanessa Haverd; Adriana Grandis; Sabrina Garcia; Carlos A. Quesada; Richard J. Norby; Celso von Randow; Felix Leung; Felix Leung; Lina M. Mercado; Qing Zhu; Mingkai Jiang; Anthony P. Walker; Bart Kruijt; Belinda E. Medlyn; Katrin Fleischer; Martin G. De Kauwe; Oscar J. Valverde-Barrantes; Xiaojuan Yang; Bernard Pak; Daniel S. Goll; Daniel S. Goll; Karst J. Schaap; Tomas F. Domingues; Jennifer A. Holm;Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO2-induced biomass carbon growth by about 50% to 79 ± 63 g C m−2 yr−1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m−2 yr−1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, and to what extent these processes can be upregulated under elevated CO2.
Nature Geoscience arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 189 citations 189 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 186 Powered bymore_vert Nature Geoscience arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United States, Netherlands, Australia, Italy, AustraliaPublisher:Oxford University Press (OUP) Funded by:, NWO | Release and Catch! Using ..., ARC | Discovery Projects - Gran... +4 projects[no funder available] ,NWO| Release and Catch! Using a light-controlled probe to uncover the signaling interactome of phosphatidic acid in the plant cold response. ,ARC| Discovery Projects - Grant ID: DP190102725 ,NSF| Collaborative Research: MRA: Scaling from Traits to Forest Ecosystem Fluxes and Responses to Climate Change, from Stand to Continent ,EC| BoostCrop ,ARC| Discovery Projects - Grant ID: DP220102785 ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMESPaul E Verslues; Julia Bailey-Serres; Craig Brodersen; Thomas N Buckley; Lucio Conti; Alexander Christmann; José R Dinneny; Erwin Grill; Scott Hayes; Robert W Heckman; Po-Kai Hsu; Thomas E Juenger; Paloma Mas; Teun Munnik; Hilde Nelissen; Lawren Sack; Julian I Schroeder; Christa Testerink; Stephen D Tyerman; Taishi Umezawa; Philip A Wigge;Abstract We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Archivio Istituziona... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 3 Powered bymore_vert Archivio Istituziona... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 France, Germany, United States, France, FrancePublisher:Springer Science and Business Media LLC Laurent Li; Tao Li; Josep Peñuelas; Yao Huang; Chuang Zhao; S. L. Piao; S. L. Piao; Joshua Elliott; Senthold Asseng; Philippe Ciais; Philippe Ciais; Christoph Müller; Ivan A. Janssens; Xuhui Wang; Chenzhi Wang;Responses of global crop yields to warmer temperatures are fundamental to sustainable development under climate change but remain uncertain. Here, we combined a global dataset of field warming experiments (48 sites) for wheat, maize, rice and soybean with gridded global crop models to produce field-data-constrained estimates on responses of crop yield to changes in temperature (ST) with the emergent-constraint approach. Our constrained estimates show with >95% probability that warmer temperatures would reduce yields for maize (−7.1 ± 2.8% K−1), rice (−5.6 ± 2.0% K−1) and soybean (−10.6 ± 5.8% K−1). For wheat, ST was 89% likely to be negative (−2.9 ± 2.3% K−1). Uncertainties associated with modelled ST were reduced by 12–54% for the four crops but data constraints do not allow for further disentangling ST of different crop types. A key implication for impact assessments after the Paris Agreement is that direct warming impacts alone will reduce major crop yields by 3–13% under 2 K global warming without considering CO2 fertilization effects and adaptations. Even if warming was limited to 1.5 K, all major producing countries would still face notable warming-induced yield reduction. This yield loss could be partially offset by projected benefits from elevated CO2, whose magnitude remains uncertain, and highlights the challenge to compensate it by autonomous adaptation. Global responses of crops to warmer temperatures will affect agricultural sustainability. This study of maize, rice, soybean and wheat projects yield reductions of 3–13% under 2 °C warming.
Hyper Article en Lig... arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0569-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 121 citations 121 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-0569-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu