- home
- Advanced Search
- Energy Research
- 7. Clean energy
- DE
- CN
- UA
- English
- Energy Research
- 7. Clean energy
- DE
- CN
- UA
- English
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Yuan, Wei; Wang, Jie;Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: QI R., H.; LU, L.; HUANG, Y.;By using a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, the liquid desiccant cooling system (LDCS) system became a promising alternative for traditional technology. Solar thermal energy is suitable to deal with the heat requirement of LDCS in buildings, especially in the areas with abundant solar radiation. The energy saving of solar-assisted liquid desiccant air-conditioning system is significantly affected by various operation conditions, and multi-parameter optimization was necessary to improve the system applicability. In this paper, we investigated the impact of five main parameters on the system performance via self-developed system modelling, including the solution mass flow rate, concentration, cooling tower flow rate, and solar water flow rate and installation area of solar collector. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. The results indicated that the installation area of solar collector showed the greatest impact, and the effect of heating water flow rate was also important. The effect of desiccant flow rate was significant, but the influence of solution concentration was slight. Then, the multi-parameter optimization was conducted for obtaining a maximum annual electricity saving rate based on the Multi-Population Genetic Algorithm. The optimized installation area of solar collector was 72 m2, and the heating water flow rate was 0.66 kg/s. The optimized solution flow rate was 0.17 kg/s. The required cooling water flow rate was around 0.8 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Everall, Jordan; Ueckerdt, Falko;Material compiled for analysis in this paper: Ueckerdt F, Bauer C, Dirnaichner A, Everall J, Sacchi R, Luderer R (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change. The material includes: 1) a spreadsheet file with technoeconomic data 2) an R Markdown script which is the source code for an interactive dashboard used to visualise (1) 3) a README file to assist with navigation of the data in (1) 1) The spreadsheet data contains CAPEX, efficiency and other supplementary data for small to large scale electrolysers for current, and future years. Data was collected based on a Literature Review of a variety of academic and industry sources conducted during the course of the title paper development. The data are differentiated by several categories including electrolysis method, source publication year and literature type. Care was taken to avoid recycled cost values, and to focus on the currency of the data, with values included to indicate the oldest reference year of any cited literature. 2) The R Markdown script in combination with the spreadsheet data is used as a basis for an interactive dashboard which can be run with an R installation and the supporting packages, or viewed online at https://h2.pik-potsdam.de/H2Dash/
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 968visibility views 968 download downloads 458 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Qifu, Lin; Longwei, Chen;Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h. Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xuan, Wang; Lin, Ma;Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions. Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Alanazi, Anwar Q.; Almalki, Masaud H.; Mishra, Aditya; Kubicki, Dominik J.; Wang, Zaiwei; Merten, Lena; Eickemeyer, Felix T.; Zhang, Hong; Ren, Dan; Alyamani, Ahmed Y.; Albrithen, Hamad; Albadri, Abdulrahman; Alotaibi, Mohammad Hayal; Hinderhofer, Alexander; Zakeeruddin, Shaik M.; Schreiber, Frank; Hagfeldt, Anders; Emsley, Lyndon; Milić, Jovana V.; Graetzel, Michael;Structural, optoelectronic, photovoltaic, and supplementary characterization data for “Benzylammonium-Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics”, DOI:10.1002/adfm.202101163. Figure_2_XRD.zip: Data described in Figure 2 (XRD patterns) as Origin (.opj) software file. Figure_3_NMR_data.zip: Data described in Figure 3 (NMR spectra) in the file structure of the TopSpin software, which is available from Bruker. Figure_4_spectra.zip: Data described in Figure 4 (UV-vis absorption, PL and IPCE spectra) as Origin (.opj) software files. Figure_5_PV.zip: Data described in Figure 5 (photovoltaic characterization) as Origin (.opj) software files. Figure_6_spectra.zip: Data described in Figure 6 (PLQY and TRPL) as Origin (.opj) and *.csv files. Figure_7_stability.zip: Data described in Figure 7 (stability analysis) as Origin (.opj) software files. Figure_SI.zip: Data described in the Supporting Information Figures S1, S2, S3, S5, and S6 (XRD data, reciprocal space maps, radial profiles of q-maps, UV-vis absorption spectra, PL spectra, and additional photovoltaic characterization) as Origin (.opj), text (.txt), and image (.tiff) files.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 113visibility views 113 download downloads 35 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Yuan, Wei; Wang, Jie;Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: QI R., H.; LU, L.; HUANG, Y.;By using a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, the liquid desiccant cooling system (LDCS) system became a promising alternative for traditional technology. Solar thermal energy is suitable to deal with the heat requirement of LDCS in buildings, especially in the areas with abundant solar radiation. The energy saving of solar-assisted liquid desiccant air-conditioning system is significantly affected by various operation conditions, and multi-parameter optimization was necessary to improve the system applicability. In this paper, we investigated the impact of five main parameters on the system performance via self-developed system modelling, including the solution mass flow rate, concentration, cooling tower flow rate, and solar water flow rate and installation area of solar collector. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. The results indicated that the installation area of solar collector showed the greatest impact, and the effect of heating water flow rate was also important. The effect of desiccant flow rate was significant, but the influence of solution concentration was slight. Then, the multi-parameter optimization was conducted for obtaining a maximum annual electricity saving rate based on the Multi-Population Genetic Algorithm. The optimized installation area of solar collector was 72 m2, and the heating water flow rate was 0.66 kg/s. The optimized solution flow rate was 0.17 kg/s. The required cooling water flow rate was around 0.8 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Everall, Jordan; Ueckerdt, Falko;Material compiled for analysis in this paper: Ueckerdt F, Bauer C, Dirnaichner A, Everall J, Sacchi R, Luderer R (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change. The material includes: 1) a spreadsheet file with technoeconomic data 2) an R Markdown script which is the source code for an interactive dashboard used to visualise (1) 3) a README file to assist with navigation of the data in (1) 1) The spreadsheet data contains CAPEX, efficiency and other supplementary data for small to large scale electrolysers for current, and future years. Data was collected based on a Literature Review of a variety of academic and industry sources conducted during the course of the title paper development. The data are differentiated by several categories including electrolysis method, source publication year and literature type. Care was taken to avoid recycled cost values, and to focus on the currency of the data, with values included to indicate the oldest reference year of any cited literature. 2) The R Markdown script in combination with the spreadsheet data is used as a basis for an interactive dashboard which can be run with an R installation and the supporting packages, or viewed online at https://h2.pik-potsdam.de/H2Dash/
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 968visibility views 968 download downloads 458 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4619891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Qifu, Lin; Longwei, Chen;Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h. Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xuan, Wang; Lin, Ma;Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions. Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Alanazi, Anwar Q.; Almalki, Masaud H.; Mishra, Aditya; Kubicki, Dominik J.; Wang, Zaiwei; Merten, Lena; Eickemeyer, Felix T.; Zhang, Hong; Ren, Dan; Alyamani, Ahmed Y.; Albrithen, Hamad; Albadri, Abdulrahman; Alotaibi, Mohammad Hayal; Hinderhofer, Alexander; Zakeeruddin, Shaik M.; Schreiber, Frank; Hagfeldt, Anders; Emsley, Lyndon; Milić, Jovana V.; Graetzel, Michael;Structural, optoelectronic, photovoltaic, and supplementary characterization data for “Benzylammonium-Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics”, DOI:10.1002/adfm.202101163. Figure_2_XRD.zip: Data described in Figure 2 (XRD patterns) as Origin (.opj) software file. Figure_3_NMR_data.zip: Data described in Figure 3 (NMR spectra) in the file structure of the TopSpin software, which is available from Bruker. Figure_4_spectra.zip: Data described in Figure 4 (UV-vis absorption, PL and IPCE spectra) as Origin (.opj) software files. Figure_5_PV.zip: Data described in Figure 5 (photovoltaic characterization) as Origin (.opj) software files. Figure_6_spectra.zip: Data described in Figure 6 (PLQY and TRPL) as Origin (.opj) and *.csv files. Figure_7_stability.zip: Data described in Figure 7 (stability analysis) as Origin (.opj) software files. Figure_SI.zip: Data described in the Supporting Information Figures S1, S2, S3, S5, and S6 (XRD data, reciprocal space maps, radial profiles of q-maps, UV-vis absorption spectra, PL spectra, and additional photovoltaic characterization) as Origin (.opj), text (.txt), and image (.tiff) files.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 113visibility views 113 download downloads 35 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4752188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu