- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- CN
- UA
- English
- Energy Research
- 12. Responsible consumption
- CN
- UA
- English
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Xu, Qingyu; Patankar, Neha; Lau, Michael; Zhang, Chuan; Jenkins, Jesse D.;This study employs an electricity system capacity panning model with detailed economic dispatch and unit commitment decisions/constraints to quantitatively answer two key questions: How does the enactment of the federal Inflation Reduction Act of 2022 impact the cost of electricity, greenhouse gas emissions, and investment in electricity capacity in the PJM Interconnection over the 2023-2035 period? Given new and expanded federal subsidies for clean electricity resources in the Inflation Reduction Act, what additional capacity investments and resource deployment would be required and at what cost for the PJM region to reduce greenhouse gas emissions 80-90% by 2035 while maintaining an affordable and reliable electricity supply? Executive summary: In August 2022, Congress passed and President Biden signed the Inflation Reduction Act (IRA), which enacts a comprehensive set of financial incentives (tax credits, grants, rebates, loans) that support all sources of carbon-free electricity, promote vehicle and building electrification and efficiency, and subsidize carbon capture and storage (CCS). The implementation of IRA means that the full financial weight of the federal government is now behind the clean energy transition. This will have transformative effects on the economics of decarbonization in the PJM Interconnection (and across the United States). IRA will spark a new, sustained period of growth in PJM electricity consumption, which could rise ~19% from 2021 to 2030. The law also subsidizes the cost of deploying new renewable energy capacity and maintaining the region’s existing nuclear fleet. As a result, this study finds that clean electricity could supply 60% [58-66% across sensitivities] of PJM demand in 2030, up from 48% [43-61%] without enactment of IRA. However, realizing this potential will require a dramatic acceleration in the pace of wind and solar interconnection and transmission expansion in the PJM Interconnection. The growth of lower-cost, carbon-free electricity under IRA will significantly reduce CO2 emissions from PJM power generation, which could fall 37% [3-66%] from 2019/2021 levels. In contrast, PJM emissions would increase 12% [0-15%] from 2021 levels without IRA. However, PJM emissions may rebound after 2032 when a production tax credit for existing nuclear reactors established by IRA is set to expire. Unless equivalent policy support is extended beyond 2032, our modeling finds 12 GW [0-33 GW] of the PJM nuclear fleet is likely to retire by 2035, with new natural gas capacity and generation increasing to fill the resulting gap and meet growing demand, reversing some of the emissions progress achieved through 2030. In addition to driving down greenhouse gas emissions, IRA also lowers the cost of electricity supply in the PJM region. We find the average cost of bulk electricity supply for PJM load serving entities (LSEs), including transmission expansion and state policy requirements, will be about $42/MWh [~$40-45/MWh] in 2030, about 5-10% lower than without IRA, and well below costs paid in 2019 ($50.2/MWh) and 2021 (~$61/MWh). The primary sources of cost savings are reduced wholesale energy prices, lower costs to meet state clean energy policy goals (due to federal subsidies), and growing demand (which spreads fixed costs over more MWh). While IRA puts the PJM region on a path to lower-cost electricity and lower greenhouse gas emissions, the new federal policy is not sufficient to drive deep decarbonization of the PJM interconnection on its own. Fortunately, by subsidizing the cost of all new carbon-free electricity resources, IRA also makes it cheaper and easier for PJM states to reduce emissions further while preserving affordability. Part 2 of this study presents a cost-optimized blueprint of the additional capacity investments and resource deployment required for the PJM region to deeply decarbonize over the 2023-2035 period. Specifically, we apply two stylized policy constraints and model the evolution of the PJM capacity mix and operations to meet those constraints: A clean electricity standard (CES) requiring increased shares of carbon-free electricity generation in the region (55% clean share by 2025, 70% by 2030, 85% by 2035), and; A CO2 emissions cap and trading scheme (cap & trade) requiring decreasing region-wide emissions (58% below 2005 emissions by 2025, 80% by 2030, 95% by 2035) This study finds that, due to passage of IRA, the PJM region could cut CO2 emissions from power generation by 80-90% by 2035 while keeping average bulk electricity supply costs for LSE’s comparable to or lower than levels experienced in recent years (2019 & 2021). However, deep decarbonization in the PJM region will require much more rapid expansion of low-carbon electricity resources and supportive transmission expansion above and beyond the rates of deployment made economical by IRA. By 2035, the region will also likely deploy more advanced ‘clean firm’ resources like gas power plants with carbon capture and storage (CCS) or long-duration electricity storage technologies (LDS), to replace coal- and gas-fired power capacity. We also identify and map several affordable resource portfolios and spatial patterns for clean electricity resource siting across the PJM region, demonstrating that the region has some flexibility to address local priorities and concerns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 551visibility views 551 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Xu, Qingyu; Patankar, Neha; Lau, Michael; Zhang, Chuan; Jenkins, Jesse D.;This study employs an electricity system capacity panning model with detailed economic dispatch and unit commitment decisions/constraints to quantitatively answer two key questions: How does the enactment of the federal Inflation Reduction Act of 2022 impact the cost of electricity, greenhouse gas emissions, and investment in electricity capacity in the PJM Interconnection over the 2023-2035 period? Given new and expanded federal subsidies for clean electricity resources in the Inflation Reduction Act, what additional capacity investments and resource deployment would be required and at what cost for the PJM region to reduce greenhouse gas emissions 80-90% by 2035 while maintaining an affordable and reliable electricity supply? Executive summary: In August 2022, Congress passed and President Biden signed the Inflation Reduction Act (IRA), which enacts a comprehensive set of financial incentives (tax credits, grants, rebates, loans) that support all sources of carbon-free electricity, promote vehicle and building electrification and efficiency, and subsidize carbon capture and storage (CCS). The implementation of IRA means that the full financial weight of the federal government is now behind the clean energy transition. This will have transformative effects on the economics of decarbonization in the PJM Interconnection (and across the United States). IRA will spark a new, sustained period of growth in PJM electricity consumption, which could rise ~19% from 2021 to 2030. The law also subsidizes the cost of deploying new renewable energy capacity and maintaining the region’s existing nuclear fleet. As a result, this study finds that clean electricity could supply 60% [58-66% across sensitivities] of PJM demand in 2030, up from 48% [43-61%] without enactment of IRA. However, realizing this potential will require a dramatic acceleration in the pace of wind and solar interconnection and transmission expansion in the PJM Interconnection. The growth of lower-cost, carbon-free electricity under IRA will significantly reduce CO2 emissions from PJM power generation, which could fall 37% [3-66%] from 2019/2021 levels. In contrast, PJM emissions would increase 12% [0-15%] from 2021 levels without IRA. However, PJM emissions may rebound after 2032 when a production tax credit for existing nuclear reactors established by IRA is set to expire. Unless equivalent policy support is extended beyond 2032, our modeling finds 12 GW [0-33 GW] of the PJM nuclear fleet is likely to retire by 2035, with new natural gas capacity and generation increasing to fill the resulting gap and meet growing demand, reversing some of the emissions progress achieved through 2030. In addition to driving down greenhouse gas emissions, IRA also lowers the cost of electricity supply in the PJM region. We find the average cost of bulk electricity supply for PJM load serving entities (LSEs), including transmission expansion and state policy requirements, will be about $42/MWh [~$40-45/MWh] in 2030, about 5-10% lower than without IRA, and well below costs paid in 2019 ($50.2/MWh) and 2021 (~$61/MWh). The primary sources of cost savings are reduced wholesale energy prices, lower costs to meet state clean energy policy goals (due to federal subsidies), and growing demand (which spreads fixed costs over more MWh). While IRA puts the PJM region on a path to lower-cost electricity and lower greenhouse gas emissions, the new federal policy is not sufficient to drive deep decarbonization of the PJM interconnection on its own. Fortunately, by subsidizing the cost of all new carbon-free electricity resources, IRA also makes it cheaper and easier for PJM states to reduce emissions further while preserving affordability. Part 2 of this study presents a cost-optimized blueprint of the additional capacity investments and resource deployment required for the PJM region to deeply decarbonize over the 2023-2035 period. Specifically, we apply two stylized policy constraints and model the evolution of the PJM capacity mix and operations to meet those constraints: A clean electricity standard (CES) requiring increased shares of carbon-free electricity generation in the region (55% clean share by 2025, 70% by 2030, 85% by 2035), and; A CO2 emissions cap and trading scheme (cap & trade) requiring decreasing region-wide emissions (58% below 2005 emissions by 2025, 80% by 2030, 95% by 2035) This study finds that, due to passage of IRA, the PJM region could cut CO2 emissions from power generation by 80-90% by 2035 while keeping average bulk electricity supply costs for LSE’s comparable to or lower than levels experienced in recent years (2019 & 2021). However, deep decarbonization in the PJM region will require much more rapid expansion of low-carbon electricity resources and supportive transmission expansion above and beyond the rates of deployment made economical by IRA. By 2035, the region will also likely deploy more advanced ‘clean firm’ resources like gas power plants with carbon capture and storage (CCS) or long-duration electricity storage technologies (LDS), to replace coal- and gas-fired power capacity. We also identify and map several affordable resource portfolios and spatial patterns for clean electricity resource siting across the PJM region, demonstrating that the region has some flexibility to address local priorities and concerns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 551visibility views 551 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Authors: Djivélékian, Emilie;In light of the escalating economic influence of Small and Medium-sized Enterprises (SMEs), the intricate interplay of sustainability, innovation, and export performance assumes paramount significance. This study focuses on French SMEs in the Auvergne-Rhône-Alpes (ARA) region, exploring the relatively uncharted territory of a synergistic approach to sustainability and innovation. Through a 2022-2023 field survey of 290 SMEs, employing Ordinary Least Squares (OLS) and Two-Stage Least Squares (2SLS) regression models, the research investigates the potential enhancement of export performance through this synergistic approach. The study reveals a positive impact, emphasizing the significance of sustainability certifications (EUR 24,416 additional export turnover per certification), R&D investment (EUR 1.38 boost per euro invested), and environmental patents (EUR 64,439 per patent). Qualitative insights enrich the understanding of challenges and opportunities, especially in terms of environmental footprint reduction. The findings underscore the need for prioritizing sustainability and innovation by French SMEs to thrive in export markets, with implications for policymakers in designing initiatives. In conclusion, this research offers a comprehensive framework for understanding the dynamics between sustainability, innovation, and export performance, providing practical guidance for SMEs and a methodological foundation for future regional research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Authors: Djivélékian, Emilie;In light of the escalating economic influence of Small and Medium-sized Enterprises (SMEs), the intricate interplay of sustainability, innovation, and export performance assumes paramount significance. This study focuses on French SMEs in the Auvergne-Rhône-Alpes (ARA) region, exploring the relatively uncharted territory of a synergistic approach to sustainability and innovation. Through a 2022-2023 field survey of 290 SMEs, employing Ordinary Least Squares (OLS) and Two-Stage Least Squares (2SLS) regression models, the research investigates the potential enhancement of export performance through this synergistic approach. The study reveals a positive impact, emphasizing the significance of sustainability certifications (EUR 24,416 additional export turnover per certification), R&D investment (EUR 1.38 boost per euro invested), and environmental patents (EUR 64,439 per patent). Qualitative insights enrich the understanding of challenges and opportunities, especially in terms of environmental footprint reduction. The findings underscore the need for prioritizing sustainability and innovation by French SMEs to thrive in export markets, with implications for policymakers in designing initiatives. In conclusion, this research offers a comprehensive framework for understanding the dynamics between sustainability, innovation, and export performance, providing practical guidance for SMEs and a methodological foundation for future regional research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2009Publisher:Croatian Society of Chemical Engineers Authors: V. P. Kukhar;Limited resources compel us to turn to renewable sources, new and old, that are capable of supporting sustainable development of the human society, and satisfying the demand in energy and materials. Plant life is far from being depleted; while its potential in supporting sustainable and renewable feedstock for organic material is great. This review is devoted to the use of biomass in production of basic organic chemicals, and to the main technological directions of biomass processing. These processes mainly involve transformation of cellulose and carbohydrates into final products by chemical or fermentation technologies. Some processes are already applied in industry, while their field of application is permanently growing. A number of chemical products can be isolated from plants directly including genetically modified species. Progress in chemical technology and biotechnology enables an almost 50–70 % substitution of oil feedstock with biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2009Publisher:Croatian Society of Chemical Engineers Authors: V. P. Kukhar;Limited resources compel us to turn to renewable sources, new and old, that are capable of supporting sustainable development of the human society, and satisfying the demand in energy and materials. Plant life is far from being depleted; while its potential in supporting sustainable and renewable feedstock for organic material is great. This review is devoted to the use of biomass in production of basic organic chemicals, and to the main technological directions of biomass processing. These processes mainly involve transformation of cellulose and carbohydrates into final products by chemical or fermentation technologies. Some processes are already applied in industry, while their field of application is permanently growing. A number of chemical products can be isolated from plants directly including genetically modified species. Progress in chemical technology and biotechnology enables an almost 50–70 % substitution of oil feedstock with biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2018 UkrainePublisher:Видавництво Львівської політехніки Authors: Khalaniia, Oksana; Hnativ, Zoriana; Atamaniuk, Volodymyr;The most energy-consuming process in technology produced by solid fuels is drying. At present, most enterprises use outdated and inefficient drying equipment, resulting in a high cost of fuel briquettes, and their manufacture and sale is a low-income business. Therefore, agricultural waste is used very limitedly and inefficiently.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2018 UkrainePublisher:Видавництво Львівської політехніки Authors: Khalaniia, Oksana; Hnativ, Zoriana; Atamaniuk, Volodymyr;The most energy-consuming process in technology produced by solid fuels is drying. At present, most enterprises use outdated and inefficient drying equipment, resulting in a high cost of fuel briquettes, and their manufacture and sale is a low-income business. Therefore, agricultural waste is used very limitedly and inefficiently.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Authors: Constant, Labintan Adeniyi; Constant, Labintan Adeniyi;Nowadays climate change event and poor population vulnerability become more severe and natural resources scarcity intensity increased. In order to mitigate climate change negative effects adaptive policies such as poverty reduction Strategy and National Adaptation Plan of Action (NAPA) as effective’s responsive strategies. There are also farmers traditional adaptation methods which are consider as local mainstreaming climate change adaptation framework. This paper has explore subjective qualitative evaluation of climate change risk management framework strategic and link its with poverty reduction strategy in the Sahel .Sahel is one of the most vulnerable areas in the world with lower HDI(0.2%) and have the highest poverty rate (over 45% of the people live below the poverty line). The study was focused on 9 Sahel countries (Senegal, Mauritania, Mali, Niger, Burkina-Faso, Nigeria, Chad, Soudan and Eritrea) and their Poverty Reduction Strategy Papers (PRSP) and National Adaptation Programmes of Action (NAPA) by assessing criteria such as: a) the consideration of climate change scenarios and the vulnerabilities of the country; b) the analysis of poverty-climate links; and c) the climate change institutional framework of the country. However Soudan and Eritrea don’t have PRSP and Nigeria don’t have NAPA. The results show that most Sahel countries does not included Climate change 2 effect in their PRSP (except Burkina-Faso) but have a better performance with NAPA framework elaboration. Burkina-Faso is Climate risk management model country in the region but policies have failed because of farmer’s difficult conditions to get access to credit and lack of good technical supports. NAPA and PRSP objectives did not achieved because majority of poor were excluded, inefficiency in domestic accounting systems and inefficient monitoring. Furthermore, donors funding problems, natural disasters such as floods or droughts; biophysical modeling and simulation insufficient data, lack of skilled labor are others reason. To conclude, it is illustrates that mainstreaming natural hazards into PRSP and the development of NAPA are a step forward into establishment of institutional process to incorporate climate change into national policies. The World Bank and the UNFCCC should coordinate efforts to support developing countries in their efforts to incorporate adaptation to climate change in PRSP. Country need to strength the coordination, networks and information flows between ministries, at different levels of government and civil society to have more efficient integration of climate change variables into poverty reduction and development strategies. Country's should also have sustainable funding and should not rely only on donor. Policies should target more vulnerable peoples, need good policies implementation and good monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Authors: Constant, Labintan Adeniyi; Constant, Labintan Adeniyi;Nowadays climate change event and poor population vulnerability become more severe and natural resources scarcity intensity increased. In order to mitigate climate change negative effects adaptive policies such as poverty reduction Strategy and National Adaptation Plan of Action (NAPA) as effective’s responsive strategies. There are also farmers traditional adaptation methods which are consider as local mainstreaming climate change adaptation framework. This paper has explore subjective qualitative evaluation of climate change risk management framework strategic and link its with poverty reduction strategy in the Sahel .Sahel is one of the most vulnerable areas in the world with lower HDI(0.2%) and have the highest poverty rate (over 45% of the people live below the poverty line). The study was focused on 9 Sahel countries (Senegal, Mauritania, Mali, Niger, Burkina-Faso, Nigeria, Chad, Soudan and Eritrea) and their Poverty Reduction Strategy Papers (PRSP) and National Adaptation Programmes of Action (NAPA) by assessing criteria such as: a) the consideration of climate change scenarios and the vulnerabilities of the country; b) the analysis of poverty-climate links; and c) the climate change institutional framework of the country. However Soudan and Eritrea don’t have PRSP and Nigeria don’t have NAPA. The results show that most Sahel countries does not included Climate change 2 effect in their PRSP (except Burkina-Faso) but have a better performance with NAPA framework elaboration. Burkina-Faso is Climate risk management model country in the region but policies have failed because of farmer’s difficult conditions to get access to credit and lack of good technical supports. NAPA and PRSP objectives did not achieved because majority of poor were excluded, inefficiency in domestic accounting systems and inefficient monitoring. Furthermore, donors funding problems, natural disasters such as floods or droughts; biophysical modeling and simulation insufficient data, lack of skilled labor are others reason. To conclude, it is illustrates that mainstreaming natural hazards into PRSP and the development of NAPA are a step forward into establishment of institutional process to incorporate climate change into national policies. The World Bank and the UNFCCC should coordinate efforts to support developing countries in their efforts to incorporate adaptation to climate change in PRSP. Country need to strength the coordination, networks and information flows between ministries, at different levels of government and civil society to have more efficient integration of climate change variables into poverty reduction and development strategies. Country's should also have sustainable funding and should not rely only on donor. Policies should target more vulnerable peoples, need good policies implementation and good monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Conference object 2023Publisher:Zenodo Authors: Voskanyan Marine;doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
The CLEWS analysis in the Philippines identifies the current energy mix, fossil fuel dependency, renewable energy potential, land use implications, environmental impact, and provides policy recommendations for achieving sustainable energy goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Conference object 2023Publisher:Zenodo Authors: Voskanyan Marine;doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
The CLEWS analysis in the Philippines identifies the current energy mix, fossil fuel dependency, renewable energy potential, land use implications, environmental impact, and provides policy recommendations for achieving sustainable energy goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2011Publisher:Unknown Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei; Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei;In view of the complexity and non-linearity of energy consumption system and the status quo of the development of energy in Qinghai province, the relations between energy consumption and industrial structure is analyzed by using the quantitative analysis of grey relation degree by using the grey system theory. The relevancy degree among the primary industry, the secondary industry and the tertiary industry and living energy consumption are obtained, and then the trend of energy consumption in the following several years can be predicted. The results show that the secondary industry has the largest relevancy degree to the total energy consumption. In the end, according to the results of the research, several suggestions on how to saving energy are put forward. Firstly, the government should improve the high-tech industry and restrict the development of high-consumption and high-pollution industries. Secondly, the government should promote the low-carbon way of life; promote energy saving and control the energy consumption of the department of life. Thirdly, clean production should be actively promoted in the tertiary industry and the circular economy should be vigorously expanded.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2011Publisher:Unknown Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei; Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei;In view of the complexity and non-linearity of energy consumption system and the status quo of the development of energy in Qinghai province, the relations between energy consumption and industrial structure is analyzed by using the quantitative analysis of grey relation degree by using the grey system theory. The relevancy degree among the primary industry, the secondary industry and the tertiary industry and living energy consumption are obtained, and then the trend of energy consumption in the following several years can be predicted. The results show that the secondary industry has the largest relevancy degree to the total energy consumption. In the end, according to the results of the research, several suggestions on how to saving energy are put forward. Firstly, the government should improve the high-tech industry and restrict the development of high-consumption and high-pollution industries. Secondly, the government should promote the low-carbon way of life; promote energy saving and control the energy consumption of the department of life. Thirdly, clean production should be actively promoted in the tertiary industry and the circular economy should be vigorously expanded.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Zuo, Meihong Zhang; Shengyang Nie; Xiaoxuan Meng; Yingtao;The freestream turbulence intensity is an important parameter for Tollmien–Schlichting waves and is also used as one of the key variables for the local- and transport-equation-based transition model in the simulations. To obtain the similar turbulence level in the vicinity to the aircraft as the turbulence intensity measured in a wind tunnel or in free-flight conditions, the sustaining turbulence term can be used for the transition model. It is important to investigate the model behavior when the sustaining turbulence is coupled with the frequently used SST-variants for transitional flows. Additionally, it is essential to obtain a nearly independent solution using the same transition model for different users on different meshes with similar grid resolution for purposes of verification and validation. So far, the relevant work has not been performed sufficiently and the sustaining turbulence technology introduces non-independent results into the freestream values. Thus, a modified sustaining turbulence approach is adopted and investigated in several test cases, including a computational effort on NACA0021 test case at 10 angles of attack. The results indicate that the modified sustaining turbulence in conjunction with the SST-2003 turbulence model yields results nearly independent to the freestream value of ω for the prediction of both streamwise and crossflow transition for two-dimensional flows without increasing computational effort too much. For three-dimensional flow, the sensitivity to initial value of ω is reduced significantly as well in comparison to the SST-based transition model, and it is highly recommended to use present sustaining turbulence technology in conjunction with the SST-2003-based transition model for engineering applications.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Zuo, Meihong Zhang; Shengyang Nie; Xiaoxuan Meng; Yingtao;The freestream turbulence intensity is an important parameter for Tollmien–Schlichting waves and is also used as one of the key variables for the local- and transport-equation-based transition model in the simulations. To obtain the similar turbulence level in the vicinity to the aircraft as the turbulence intensity measured in a wind tunnel or in free-flight conditions, the sustaining turbulence term can be used for the transition model. It is important to investigate the model behavior when the sustaining turbulence is coupled with the frequently used SST-variants for transitional flows. Additionally, it is essential to obtain a nearly independent solution using the same transition model for different users on different meshes with similar grid resolution for purposes of verification and validation. So far, the relevant work has not been performed sufficiently and the sustaining turbulence technology introduces non-independent results into the freestream values. Thus, a modified sustaining turbulence approach is adopted and investigated in several test cases, including a computational effort on NACA0021 test case at 10 angles of attack. The results indicate that the modified sustaining turbulence in conjunction with the SST-2003 turbulence model yields results nearly independent to the freestream value of ω for the prediction of both streamwise and crossflow transition for two-dimensional flows without increasing computational effort too much. For three-dimensional flow, the sensitivity to initial value of ω is reduced significantly as well in comparison to the SST-based transition model, and it is highly recommended to use present sustaining turbulence technology in conjunction with the SST-2003-based transition model for engineering applications.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Research , Preprint , Report 2008 GermanyPublisher:Unknown Authors: Gerber, Nicolas; Gerber, Nicolas;handle: 20.500.11811/12281
Four broad types of studies on rural development and bioenergy technologies are identified. Within these four types, this discussion paper presents a number of existing studies which are most relevant in the context of developing a research focus on the role, feasibility and issues associated with bioenergy, and in particular biofuels, as engine for rural development in developing countries. The results and recommendations of the referenced studies, reflecting the global trends of the current literature, highlight the importance of bioenergy technologies in the development process of poor rural communities. The surge of biofuels and in particular of their feedstocks on the international agricultural markets has recently commended a lot of attention. However, whilst biofuels hold a huge economic potential as internationally traded commodities, the various issues and challenges facing biofuel production systems could indicate that in the context of developing economies, they are better suited for the domestic energy markets. In any case, the analysis necessary to formulate policy recommendations on how, where and when to implement which bioenergy technology calls for a differentiated – per region and/or technology – and integrated – within and alongside other rural production systems – approach. In this context, this review of existing studies exposes some unanswered questions and research gaps.
bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Research , Preprint , Report 2008 GermanyPublisher:Unknown Authors: Gerber, Nicolas; Gerber, Nicolas;handle: 20.500.11811/12281
Four broad types of studies on rural development and bioenergy technologies are identified. Within these four types, this discussion paper presents a number of existing studies which are most relevant in the context of developing a research focus on the role, feasibility and issues associated with bioenergy, and in particular biofuels, as engine for rural development in developing countries. The results and recommendations of the referenced studies, reflecting the global trends of the current literature, highlight the importance of bioenergy technologies in the development process of poor rural communities. The surge of biofuels and in particular of their feedstocks on the international agricultural markets has recently commended a lot of attention. However, whilst biofuels hold a huge economic potential as internationally traded commodities, the various issues and challenges facing biofuel production systems could indicate that in the context of developing economies, they are better suited for the domestic energy markets. In any case, the analysis necessary to formulate policy recommendations on how, where and when to implement which bioenergy technology calls for a differentiated – per region and/or technology – and integrated – within and alongside other rural production systems – approach. In this context, this review of existing studies exposes some unanswered questions and research gaps.
bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Xu, Qingyu; Patankar, Neha; Lau, Michael; Zhang, Chuan; Jenkins, Jesse D.;This study employs an electricity system capacity panning model with detailed economic dispatch and unit commitment decisions/constraints to quantitatively answer two key questions: How does the enactment of the federal Inflation Reduction Act of 2022 impact the cost of electricity, greenhouse gas emissions, and investment in electricity capacity in the PJM Interconnection over the 2023-2035 period? Given new and expanded federal subsidies for clean electricity resources in the Inflation Reduction Act, what additional capacity investments and resource deployment would be required and at what cost for the PJM region to reduce greenhouse gas emissions 80-90% by 2035 while maintaining an affordable and reliable electricity supply? Executive summary: In August 2022, Congress passed and President Biden signed the Inflation Reduction Act (IRA), which enacts a comprehensive set of financial incentives (tax credits, grants, rebates, loans) that support all sources of carbon-free electricity, promote vehicle and building electrification and efficiency, and subsidize carbon capture and storage (CCS). The implementation of IRA means that the full financial weight of the federal government is now behind the clean energy transition. This will have transformative effects on the economics of decarbonization in the PJM Interconnection (and across the United States). IRA will spark a new, sustained period of growth in PJM electricity consumption, which could rise ~19% from 2021 to 2030. The law also subsidizes the cost of deploying new renewable energy capacity and maintaining the region’s existing nuclear fleet. As a result, this study finds that clean electricity could supply 60% [58-66% across sensitivities] of PJM demand in 2030, up from 48% [43-61%] without enactment of IRA. However, realizing this potential will require a dramatic acceleration in the pace of wind and solar interconnection and transmission expansion in the PJM Interconnection. The growth of lower-cost, carbon-free electricity under IRA will significantly reduce CO2 emissions from PJM power generation, which could fall 37% [3-66%] from 2019/2021 levels. In contrast, PJM emissions would increase 12% [0-15%] from 2021 levels without IRA. However, PJM emissions may rebound after 2032 when a production tax credit for existing nuclear reactors established by IRA is set to expire. Unless equivalent policy support is extended beyond 2032, our modeling finds 12 GW [0-33 GW] of the PJM nuclear fleet is likely to retire by 2035, with new natural gas capacity and generation increasing to fill the resulting gap and meet growing demand, reversing some of the emissions progress achieved through 2030. In addition to driving down greenhouse gas emissions, IRA also lowers the cost of electricity supply in the PJM region. We find the average cost of bulk electricity supply for PJM load serving entities (LSEs), including transmission expansion and state policy requirements, will be about $42/MWh [~$40-45/MWh] in 2030, about 5-10% lower than without IRA, and well below costs paid in 2019 ($50.2/MWh) and 2021 (~$61/MWh). The primary sources of cost savings are reduced wholesale energy prices, lower costs to meet state clean energy policy goals (due to federal subsidies), and growing demand (which spreads fixed costs over more MWh). While IRA puts the PJM region on a path to lower-cost electricity and lower greenhouse gas emissions, the new federal policy is not sufficient to drive deep decarbonization of the PJM interconnection on its own. Fortunately, by subsidizing the cost of all new carbon-free electricity resources, IRA also makes it cheaper and easier for PJM states to reduce emissions further while preserving affordability. Part 2 of this study presents a cost-optimized blueprint of the additional capacity investments and resource deployment required for the PJM region to deeply decarbonize over the 2023-2035 period. Specifically, we apply two stylized policy constraints and model the evolution of the PJM capacity mix and operations to meet those constraints: A clean electricity standard (CES) requiring increased shares of carbon-free electricity generation in the region (55% clean share by 2025, 70% by 2030, 85% by 2035), and; A CO2 emissions cap and trading scheme (cap & trade) requiring decreasing region-wide emissions (58% below 2005 emissions by 2025, 80% by 2030, 95% by 2035) This study finds that, due to passage of IRA, the PJM region could cut CO2 emissions from power generation by 80-90% by 2035 while keeping average bulk electricity supply costs for LSE’s comparable to or lower than levels experienced in recent years (2019 & 2021). However, deep decarbonization in the PJM region will require much more rapid expansion of low-carbon electricity resources and supportive transmission expansion above and beyond the rates of deployment made economical by IRA. By 2035, the region will also likely deploy more advanced ‘clean firm’ resources like gas power plants with carbon capture and storage (CCS) or long-duration electricity storage technologies (LDS), to replace coal- and gas-fired power capacity. We also identify and map several affordable resource portfolios and spatial patterns for clean electricity resource siting across the PJM region, demonstrating that the region has some flexibility to address local priorities and concerns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 551visibility views 551 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Xu, Qingyu; Patankar, Neha; Lau, Michael; Zhang, Chuan; Jenkins, Jesse D.;This study employs an electricity system capacity panning model with detailed economic dispatch and unit commitment decisions/constraints to quantitatively answer two key questions: How does the enactment of the federal Inflation Reduction Act of 2022 impact the cost of electricity, greenhouse gas emissions, and investment in electricity capacity in the PJM Interconnection over the 2023-2035 period? Given new and expanded federal subsidies for clean electricity resources in the Inflation Reduction Act, what additional capacity investments and resource deployment would be required and at what cost for the PJM region to reduce greenhouse gas emissions 80-90% by 2035 while maintaining an affordable and reliable electricity supply? Executive summary: In August 2022, Congress passed and President Biden signed the Inflation Reduction Act (IRA), which enacts a comprehensive set of financial incentives (tax credits, grants, rebates, loans) that support all sources of carbon-free electricity, promote vehicle and building electrification and efficiency, and subsidize carbon capture and storage (CCS). The implementation of IRA means that the full financial weight of the federal government is now behind the clean energy transition. This will have transformative effects on the economics of decarbonization in the PJM Interconnection (and across the United States). IRA will spark a new, sustained period of growth in PJM electricity consumption, which could rise ~19% from 2021 to 2030. The law also subsidizes the cost of deploying new renewable energy capacity and maintaining the region’s existing nuclear fleet. As a result, this study finds that clean electricity could supply 60% [58-66% across sensitivities] of PJM demand in 2030, up from 48% [43-61%] without enactment of IRA. However, realizing this potential will require a dramatic acceleration in the pace of wind and solar interconnection and transmission expansion in the PJM Interconnection. The growth of lower-cost, carbon-free electricity under IRA will significantly reduce CO2 emissions from PJM power generation, which could fall 37% [3-66%] from 2019/2021 levels. In contrast, PJM emissions would increase 12% [0-15%] from 2021 levels without IRA. However, PJM emissions may rebound after 2032 when a production tax credit for existing nuclear reactors established by IRA is set to expire. Unless equivalent policy support is extended beyond 2032, our modeling finds 12 GW [0-33 GW] of the PJM nuclear fleet is likely to retire by 2035, with new natural gas capacity and generation increasing to fill the resulting gap and meet growing demand, reversing some of the emissions progress achieved through 2030. In addition to driving down greenhouse gas emissions, IRA also lowers the cost of electricity supply in the PJM region. We find the average cost of bulk electricity supply for PJM load serving entities (LSEs), including transmission expansion and state policy requirements, will be about $42/MWh [~$40-45/MWh] in 2030, about 5-10% lower than without IRA, and well below costs paid in 2019 ($50.2/MWh) and 2021 (~$61/MWh). The primary sources of cost savings are reduced wholesale energy prices, lower costs to meet state clean energy policy goals (due to federal subsidies), and growing demand (which spreads fixed costs over more MWh). While IRA puts the PJM region on a path to lower-cost electricity and lower greenhouse gas emissions, the new federal policy is not sufficient to drive deep decarbonization of the PJM interconnection on its own. Fortunately, by subsidizing the cost of all new carbon-free electricity resources, IRA also makes it cheaper and easier for PJM states to reduce emissions further while preserving affordability. Part 2 of this study presents a cost-optimized blueprint of the additional capacity investments and resource deployment required for the PJM region to deeply decarbonize over the 2023-2035 period. Specifically, we apply two stylized policy constraints and model the evolution of the PJM capacity mix and operations to meet those constraints: A clean electricity standard (CES) requiring increased shares of carbon-free electricity generation in the region (55% clean share by 2025, 70% by 2030, 85% by 2035), and; A CO2 emissions cap and trading scheme (cap & trade) requiring decreasing region-wide emissions (58% below 2005 emissions by 2025, 80% by 2030, 95% by 2035) This study finds that, due to passage of IRA, the PJM region could cut CO2 emissions from power generation by 80-90% by 2035 while keeping average bulk electricity supply costs for LSE’s comparable to or lower than levels experienced in recent years (2019 & 2021). However, deep decarbonization in the PJM region will require much more rapid expansion of low-carbon electricity resources and supportive transmission expansion above and beyond the rates of deployment made economical by IRA. By 2035, the region will also likely deploy more advanced ‘clean firm’ resources like gas power plants with carbon capture and storage (CCS) or long-duration electricity storage technologies (LDS), to replace coal- and gas-fired power capacity. We also identify and map several affordable resource portfolios and spatial patterns for clean electricity resource siting across the PJM region, demonstrating that the region has some flexibility to address local priorities and concerns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 551visibility views 551 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Authors: Djivélékian, Emilie;In light of the escalating economic influence of Small and Medium-sized Enterprises (SMEs), the intricate interplay of sustainability, innovation, and export performance assumes paramount significance. This study focuses on French SMEs in the Auvergne-Rhône-Alpes (ARA) region, exploring the relatively uncharted territory of a synergistic approach to sustainability and innovation. Through a 2022-2023 field survey of 290 SMEs, employing Ordinary Least Squares (OLS) and Two-Stage Least Squares (2SLS) regression models, the research investigates the potential enhancement of export performance through this synergistic approach. The study reveals a positive impact, emphasizing the significance of sustainability certifications (EUR 24,416 additional export turnover per certification), R&D investment (EUR 1.38 boost per euro invested), and environmental patents (EUR 64,439 per patent). Qualitative insights enrich the understanding of challenges and opportunities, especially in terms of environmental footprint reduction. The findings underscore the need for prioritizing sustainability and innovation by French SMEs to thrive in export markets, with implications for policymakers in designing initiatives. In conclusion, this research offers a comprehensive framework for understanding the dynamics between sustainability, innovation, and export performance, providing practical guidance for SMEs and a methodological foundation for future regional research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Authors: Djivélékian, Emilie;In light of the escalating economic influence of Small and Medium-sized Enterprises (SMEs), the intricate interplay of sustainability, innovation, and export performance assumes paramount significance. This study focuses on French SMEs in the Auvergne-Rhône-Alpes (ARA) region, exploring the relatively uncharted territory of a synergistic approach to sustainability and innovation. Through a 2022-2023 field survey of 290 SMEs, employing Ordinary Least Squares (OLS) and Two-Stage Least Squares (2SLS) regression models, the research investigates the potential enhancement of export performance through this synergistic approach. The study reveals a positive impact, emphasizing the significance of sustainability certifications (EUR 24,416 additional export turnover per certification), R&D investment (EUR 1.38 boost per euro invested), and environmental patents (EUR 64,439 per patent). Qualitative insights enrich the understanding of challenges and opportunities, especially in terms of environmental footprint reduction. The findings underscore the need for prioritizing sustainability and innovation by French SMEs to thrive in export markets, with implications for policymakers in designing initiatives. In conclusion, this research offers a comprehensive framework for understanding the dynamics between sustainability, innovation, and export performance, providing practical guidance for SMEs and a methodological foundation for future regional research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10257912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2009Publisher:Croatian Society of Chemical Engineers Authors: V. P. Kukhar;Limited resources compel us to turn to renewable sources, new and old, that are capable of supporting sustainable development of the human society, and satisfying the demand in energy and materials. Plant life is far from being depleted; while its potential in supporting sustainable and renewable feedstock for organic material is great. This review is devoted to the use of biomass in production of basic organic chemicals, and to the main technological directions of biomass processing. These processes mainly involve transformation of cellulose and carbohydrates into final products by chemical or fermentation technologies. Some processes are already applied in industry, while their field of application is permanently growing. A number of chemical products can be isolated from plants directly including genetically modified species. Progress in chemical technology and biotechnology enables an almost 50–70 % substitution of oil feedstock with biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2009Publisher:Croatian Society of Chemical Engineers Authors: V. P. Kukhar;Limited resources compel us to turn to renewable sources, new and old, that are capable of supporting sustainable development of the human society, and satisfying the demand in energy and materials. Plant life is far from being depleted; while its potential in supporting sustainable and renewable feedstock for organic material is great. This review is devoted to the use of biomass in production of basic organic chemicals, and to the main technological directions of biomass processing. These processes mainly involve transformation of cellulose and carbohydrates into final products by chemical or fermentation technologies. Some processes are already applied in industry, while their field of application is permanently growing. A number of chemical products can be isolated from plants directly including genetically modified species. Progress in chemical technology and biotechnology enables an almost 50–70 % substitution of oil feedstock with biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::061c3a9e720507308e657e207bb92613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2018 UkrainePublisher:Видавництво Львівської політехніки Authors: Khalaniia, Oksana; Hnativ, Zoriana; Atamaniuk, Volodymyr;The most energy-consuming process in technology produced by solid fuels is drying. At present, most enterprises use outdated and inefficient drying equipment, resulting in a high cost of fuel briquettes, and their manufacture and sale is a low-income business. Therefore, agricultural waste is used very limitedly and inefficiently.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2018 UkrainePublisher:Видавництво Львівської політехніки Authors: Khalaniia, Oksana; Hnativ, Zoriana; Atamaniuk, Volodymyr;The most energy-consuming process in technology produced by solid fuels is drying. At present, most enterprises use outdated and inefficient drying equipment, resulting in a high cost of fuel briquettes, and their manufacture and sale is a low-income business. Therefore, agricultural waste is used very limitedly and inefficiently.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1859::cd108de2450e76805bc87cf094607c8a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Authors: Constant, Labintan Adeniyi; Constant, Labintan Adeniyi;Nowadays climate change event and poor population vulnerability become more severe and natural resources scarcity intensity increased. In order to mitigate climate change negative effects adaptive policies such as poverty reduction Strategy and National Adaptation Plan of Action (NAPA) as effective’s responsive strategies. There are also farmers traditional adaptation methods which are consider as local mainstreaming climate change adaptation framework. This paper has explore subjective qualitative evaluation of climate change risk management framework strategic and link its with poverty reduction strategy in the Sahel .Sahel is one of the most vulnerable areas in the world with lower HDI(0.2%) and have the highest poverty rate (over 45% of the people live below the poverty line). The study was focused on 9 Sahel countries (Senegal, Mauritania, Mali, Niger, Burkina-Faso, Nigeria, Chad, Soudan and Eritrea) and their Poverty Reduction Strategy Papers (PRSP) and National Adaptation Programmes of Action (NAPA) by assessing criteria such as: a) the consideration of climate change scenarios and the vulnerabilities of the country; b) the analysis of poverty-climate links; and c) the climate change institutional framework of the country. However Soudan and Eritrea don’t have PRSP and Nigeria don’t have NAPA. The results show that most Sahel countries does not included Climate change 2 effect in their PRSP (except Burkina-Faso) but have a better performance with NAPA framework elaboration. Burkina-Faso is Climate risk management model country in the region but policies have failed because of farmer’s difficult conditions to get access to credit and lack of good technical supports. NAPA and PRSP objectives did not achieved because majority of poor were excluded, inefficiency in domestic accounting systems and inefficient monitoring. Furthermore, donors funding problems, natural disasters such as floods or droughts; biophysical modeling and simulation insufficient data, lack of skilled labor are others reason. To conclude, it is illustrates that mainstreaming natural hazards into PRSP and the development of NAPA are a step forward into establishment of institutional process to incorporate climate change into national policies. The World Bank and the UNFCCC should coordinate efforts to support developing countries in their efforts to incorporate adaptation to climate change in PRSP. Country need to strength the coordination, networks and information flows between ministries, at different levels of government and civil society to have more efficient integration of climate change variables into poverty reduction and development strategies. Country's should also have sustainable funding and should not rely only on donor. Policies should target more vulnerable peoples, need good policies implementation and good monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Authors: Constant, Labintan Adeniyi; Constant, Labintan Adeniyi;Nowadays climate change event and poor population vulnerability become more severe and natural resources scarcity intensity increased. In order to mitigate climate change negative effects adaptive policies such as poverty reduction Strategy and National Adaptation Plan of Action (NAPA) as effective’s responsive strategies. There are also farmers traditional adaptation methods which are consider as local mainstreaming climate change adaptation framework. This paper has explore subjective qualitative evaluation of climate change risk management framework strategic and link its with poverty reduction strategy in the Sahel .Sahel is one of the most vulnerable areas in the world with lower HDI(0.2%) and have the highest poverty rate (over 45% of the people live below the poverty line). The study was focused on 9 Sahel countries (Senegal, Mauritania, Mali, Niger, Burkina-Faso, Nigeria, Chad, Soudan and Eritrea) and their Poverty Reduction Strategy Papers (PRSP) and National Adaptation Programmes of Action (NAPA) by assessing criteria such as: a) the consideration of climate change scenarios and the vulnerabilities of the country; b) the analysis of poverty-climate links; and c) the climate change institutional framework of the country. However Soudan and Eritrea don’t have PRSP and Nigeria don’t have NAPA. The results show that most Sahel countries does not included Climate change 2 effect in their PRSP (except Burkina-Faso) but have a better performance with NAPA framework elaboration. Burkina-Faso is Climate risk management model country in the region but policies have failed because of farmer’s difficult conditions to get access to credit and lack of good technical supports. NAPA and PRSP objectives did not achieved because majority of poor were excluded, inefficiency in domestic accounting systems and inefficient monitoring. Furthermore, donors funding problems, natural disasters such as floods or droughts; biophysical modeling and simulation insufficient data, lack of skilled labor are others reason. To conclude, it is illustrates that mainstreaming natural hazards into PRSP and the development of NAPA are a step forward into establishment of institutional process to incorporate climate change into national policies. The World Bank and the UNFCCC should coordinate efforts to support developing countries in their efforts to incorporate adaptation to climate change in PRSP. Country need to strength the coordination, networks and information flows between ministries, at different levels of government and civil society to have more efficient integration of climate change variables into poverty reduction and development strategies. Country's should also have sustainable funding and should not rely only on donor. Policies should target more vulnerable peoples, need good policies implementation and good monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Conference object 2023Publisher:Zenodo Authors: Voskanyan Marine;doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
The CLEWS analysis in the Philippines identifies the current energy mix, fossil fuel dependency, renewable energy potential, land use implications, environmental impact, and provides policy recommendations for achieving sustainable energy goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Conference object 2023Publisher:Zenodo Authors: Voskanyan Marine;doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
doi: 10.5281/zenodo.8187390 , 10.5281/zenodo.8140616 , 10.5281/zenodo.8187445 , 10.5281/zenodo.8187444 , 10.5281/zenodo.8140617 , 10.5281/zenodo.8140534 , 10.5281/zenodo.8187369 , 10.5281/zenodo.8139360 , 10.5281/zenodo.8187343 , 10.5281/zenodo.8187370 , 10.5281/zenodo.8187344 , 10.5281/zenodo.8139361 , 10.5281/zenodo.8187389 , 10.5281/zenodo.8140533
The CLEWS analysis in the Philippines identifies the current energy mix, fossil fuel dependency, renewable energy potential, land use implications, environmental impact, and provides policy recommendations for achieving sustainable energy goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8187390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2011Publisher:Unknown Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei; Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei;In view of the complexity and non-linearity of energy consumption system and the status quo of the development of energy in Qinghai province, the relations between energy consumption and industrial structure is analyzed by using the quantitative analysis of grey relation degree by using the grey system theory. The relevancy degree among the primary industry, the secondary industry and the tertiary industry and living energy consumption are obtained, and then the trend of energy consumption in the following several years can be predicted. The results show that the secondary industry has the largest relevancy degree to the total energy consumption. In the end, according to the results of the research, several suggestions on how to saving energy are put forward. Firstly, the government should improve the high-tech industry and restrict the development of high-consumption and high-pollution industries. Secondly, the government should promote the low-carbon way of life; promote energy saving and control the energy consumption of the department of life. Thirdly, clean production should be actively promoted in the tertiary industry and the circular economy should be vigorously expanded.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2011Publisher:Unknown Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei; Zhang, Yin-Ling; Wang, Dan-Tong; Zhao, Wei;In view of the complexity and non-linearity of energy consumption system and the status quo of the development of energy in Qinghai province, the relations between energy consumption and industrial structure is analyzed by using the quantitative analysis of grey relation degree by using the grey system theory. The relevancy degree among the primary industry, the secondary industry and the tertiary industry and living energy consumption are obtained, and then the trend of energy consumption in the following several years can be predicted. The results show that the secondary industry has the largest relevancy degree to the total energy consumption. In the end, according to the results of the research, several suggestions on how to saving energy are put forward. Firstly, the government should improve the high-tech industry and restrict the development of high-consumption and high-pollution industries. Secondly, the government should promote the low-carbon way of life; promote energy saving and control the energy consumption of the department of life. Thirdly, clean production should be actively promoted in the tertiary industry and the circular economy should be vigorously expanded.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.113929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Zuo, Meihong Zhang; Shengyang Nie; Xiaoxuan Meng; Yingtao;The freestream turbulence intensity is an important parameter for Tollmien–Schlichting waves and is also used as one of the key variables for the local- and transport-equation-based transition model in the simulations. To obtain the similar turbulence level in the vicinity to the aircraft as the turbulence intensity measured in a wind tunnel or in free-flight conditions, the sustaining turbulence term can be used for the transition model. It is important to investigate the model behavior when the sustaining turbulence is coupled with the frequently used SST-variants for transitional flows. Additionally, it is essential to obtain a nearly independent solution using the same transition model for different users on different meshes with similar grid resolution for purposes of verification and validation. So far, the relevant work has not been performed sufficiently and the sustaining turbulence technology introduces non-independent results into the freestream values. Thus, a modified sustaining turbulence approach is adopted and investigated in several test cases, including a computational effort on NACA0021 test case at 10 angles of attack. The results indicate that the modified sustaining turbulence in conjunction with the SST-2003 turbulence model yields results nearly independent to the freestream value of ω for the prediction of both streamwise and crossflow transition for two-dimensional flows without increasing computational effort too much. For three-dimensional flow, the sensitivity to initial value of ω is reduced significantly as well in comparison to the SST-based transition model, and it is highly recommended to use present sustaining turbulence technology in conjunction with the SST-2003-based transition model for engineering applications.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Zuo, Meihong Zhang; Shengyang Nie; Xiaoxuan Meng; Yingtao;The freestream turbulence intensity is an important parameter for Tollmien–Schlichting waves and is also used as one of the key variables for the local- and transport-equation-based transition model in the simulations. To obtain the similar turbulence level in the vicinity to the aircraft as the turbulence intensity measured in a wind tunnel or in free-flight conditions, the sustaining turbulence term can be used for the transition model. It is important to investigate the model behavior when the sustaining turbulence is coupled with the frequently used SST-variants for transitional flows. Additionally, it is essential to obtain a nearly independent solution using the same transition model for different users on different meshes with similar grid resolution for purposes of verification and validation. So far, the relevant work has not been performed sufficiently and the sustaining turbulence technology introduces non-independent results into the freestream values. Thus, a modified sustaining turbulence approach is adopted and investigated in several test cases, including a computational effort on NACA0021 test case at 10 angles of attack. The results indicate that the modified sustaining turbulence in conjunction with the SST-2003 turbulence model yields results nearly independent to the freestream value of ω for the prediction of both streamwise and crossflow transition for two-dimensional flows without increasing computational effort too much. For three-dimensional flow, the sensitivity to initial value of ω is reduced significantly as well in comparison to the SST-based transition model, and it is highly recommended to use present sustaining turbulence technology in conjunction with the SST-2003-based transition model for engineering applications.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/17/6491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::bb2d98ee8c51197853e4dc667f156c50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Research , Preprint , Report 2008 GermanyPublisher:Unknown Authors: Gerber, Nicolas; Gerber, Nicolas;handle: 20.500.11811/12281
Four broad types of studies on rural development and bioenergy technologies are identified. Within these four types, this discussion paper presents a number of existing studies which are most relevant in the context of developing a research focus on the role, feasibility and issues associated with bioenergy, and in particular biofuels, as engine for rural development in developing countries. The results and recommendations of the referenced studies, reflecting the global trends of the current literature, highlight the importance of bioenergy technologies in the development process of poor rural communities. The surge of biofuels and in particular of their feedstocks on the international agricultural markets has recently commended a lot of attention. However, whilst biofuels hold a huge economic potential as internationally traded commodities, the various issues and challenges facing biofuel production systems could indicate that in the context of developing economies, they are better suited for the domestic energy markets. In any case, the analysis necessary to formulate policy recommendations on how, where and when to implement which bioenergy technology calls for a differentiated – per region and/or technology – and integrated – within and alongside other rural production systems – approach. In this context, this review of existing studies exposes some unanswered questions and research gaps.
bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Research , Preprint , Report 2008 GermanyPublisher:Unknown Authors: Gerber, Nicolas; Gerber, Nicolas;handle: 20.500.11811/12281
Four broad types of studies on rural development and bioenergy technologies are identified. Within these four types, this discussion paper presents a number of existing studies which are most relevant in the context of developing a research focus on the role, feasibility and issues associated with bioenergy, and in particular biofuels, as engine for rural development in developing countries. The results and recommendations of the referenced studies, reflecting the global trends of the current literature, highlight the importance of bioenergy technologies in the development process of poor rural communities. The surge of biofuels and in particular of their feedstocks on the international agricultural markets has recently commended a lot of attention. However, whilst biofuels hold a huge economic potential as internationally traded commodities, the various issues and challenges facing biofuel production systems could indicate that in the context of developing economies, they are better suited for the domestic energy markets. In any case, the analysis necessary to formulate policy recommendations on how, where and when to implement which bioenergy technology calls for a differentiated – per region and/or technology – and integrated – within and alongside other rural production systems – approach. In this context, this review of existing studies exposes some unanswered questions and research gaps.
bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert bonndoc - The Reposi... arrow_drop_down bonndoc - The Repository of the University of BonnReport . 2008Full-Text: https://hdl.handle.net/20.500.11811/12281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.37862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu