- home
- Advanced Search
- Energy Research
- engineering and technology
- CN
- EU
- UA
- Energy Research
- engineering and technology
- CN
- EU
- UA
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Jiarong Ye; Songping Mo; Lisi Jia; Ying Chen;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), China (People's Republic of), United StatesPublisher:Elsevier BV Authors:Han Li;
Zhe Wang;
Zhe Wang
Zhe Wang in OpenAIRETianzhen Hong;
Tianzhen Hong
Tianzhen Hong in OpenAIREAndrew Parker;
+1 AuthorsAndrew Parker
Andrew Parker in OpenAIREHan Li;
Zhe Wang;
Zhe Wang
Zhe Wang in OpenAIRETianzhen Hong;
Tianzhen Hong
Tianzhen Hong in OpenAIREAndrew Parker;
Monica Neukomm;Andrew Parker
Andrew Parker in OpenAIREThe rapid development of advanced metering infrastructure provides a new data source—building electrical load profiles with high temporal resolution. Electric load profile characterization can generate useful information to enhance building energy modeling and provide metrics to represent patterns and variability of load profiles. Such characterizations can be used to identify changes to building electricity demand due to operations or faulty equipment and controls. In this study, we proposed a two-path approach to analyze high temporal resolution building electrical load profiles: (1) time-domain analysis and (2) frequency-domain analysis. The commonly adopted time-domain analysis can extract and quantify the distribution of key parameters characterizing load shape such as peak-base load ratio and morning rise time, while a frequency-domain analysis can identify major periodic fluctuations and quantify load variability. We implemented and evaluated both paths using whole-year 15-minute interval smart meter data of 188 commercial office building in Northern California. The results from these two paths are consistent with each other and complementary to represent full dynamics of load profiles. The time- and frequency-domain analyses can be used to enhance building energy modeling by: (1) providing more realistic assumptions about building operation schedules, and (2) validating the simulated electric load profiles using the developed variability metrics against the real building load data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Abstract To obtain high yield and high concentration glucose from corncob residues (CRs), tetrahydrofuran (THF) + H2O co-solvent pretreatment was employed. The pretreatment parameters were firstly optimized by Box-Behnken Design of response surface method, and the maximum glucose yield (498.2 mg/g CRs) was obtained via enzymatic hydrolysis after pretreated under optimized conditions (53.7% THF concentration, 202.3 °C, 1.05 h). Then, the pretreated CRs under optimized conditions (optimized-CRs) were enzymatically hydrolyzed at high solid loading (15%–20%) and low enzyme input (5–8 FPU/g cellulose). The high concentration glucose production (128.6 mg/mL) was obtained from optimized-CRs after enzymatic hydrolysis at 20% solid loading with 10 FPU/g cellulose for 72 h, and then showed potential for reduction of enzyme input. Finally, the interactions between the 9 substrate-related factors and cellulose conversion were analyzed through correlation analysis, and found that Klason lignin remained in the cellulose-rich fractions and pseudo lignin condensed on the surface of the recovered substrate were the predominant inhibitors for enzymatic hydrolysis.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Limin Wang; Zhongqiu Liu; Yujing Liu; Sujuan Huang; Xiaotong Lu; Shengnan Li;Anguo Ying;
Anguo Ying
Anguo Ying in OpenAIREAbstract The prime purpose of this work is to prepare a novel kind of Pickering interfacial solid catalysts for biodiesel production to meet the requirements of highly efficiency and environmental benign. To achieve this goal, the core–shell P[xSPA-yDABCO]@SiO2@Fe3O4 composite materials with a shell of photo-responsive and base catalytic sites were manufactured by means of layer-by-layer fabrication method. The modified materials, entirely characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectra, X-ray powder diffraction (XRD) and magnetization versus magnetic (VSM) techniques, demonstrated sufficient catalytic active sites and photo-responsive sites. Among all the so-prepared catalysts, P[3SPA-2DABCO]@SiO2@Fe3O4 performs extremely well and can stabilize soybean oil-in-methanol Pickering emulsion for 24 h, achieving a biodiesel yield up to 98.2% at a catalyst dosage of 5 wt% after the reaction time of 5 h at 60 °C. Furthermore, the double responsive solid catalyst can be readily separated from the mixture of reaction by an external magnet and UV irradiation, and still presented superior catalytic activity after 6 cycles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Private Company Technology Center Authors:Sergii Kostyk;
Sergii Kostyk
Sergii Kostyk in OpenAIREVladislav Shybetskyy;
Vladislav Shybetskyy
Vladislav Shybetskyy in OpenAIRESergei Fesenko;
Sergei Fesenko
Sergei Fesenko in OpenAIREVadym Povodzinskiy;
Vadym Povodzinskiy
Vadym Povodzinskiy in OpenAIREThis paper reports the generalized results of computer simulation of physical processes at a rotor-disk film evaporating plant. Optimization of the operation mode cannot be achieved without establishing patterns in the course of physical processes. We have proposed a computer model of hydrodynamics that accounts for all the features, initial and boundary conditions. The results of computer simulations make it possible to adequately assess the effectiveness of using a rotor-disk film evaporating plant (RDFVP) for the concentration of heat-labile materials. We have established patterns in the course of physical processes within a structure of RDFVP by using computer simulation of hydrodynamics in the programming environment ANSYS and applying a k-e turbulence model. The result of simulation is the derived velocity fields of the concentrated fluid (w max =0.413 m/s) and the gas phase (w max =8.176 m/s), as well as the magnitude of values for shear stress τ=0.94·10 -6 Pa. It was established that the gas heat-carrier is characterized by the highly-turbulent flows with maximum values for kinetic energy TKE max =8.985·10 -1 m 2 /s 2 . The reliability of results is ensured by the correctness, completeness, and adequacy of physical assumptions when stating the problem and while solving it using the computer aided design system ANSYS. It has been established that the proposed structure is an effective alternative to equipment for the concentration of solutions. The data obtained could be used when designing heat-and-mass-exchange equipment for the highly efficient dehydration of thermolabile materials
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2019.156649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2019.156649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Yanwen Li; Mingkun Yang; Gexin Chen; Guishan Yan; Cong Yu; Jianxin Lu; Chao Ai;doi: 10.3390/en14164869
The electro-hydraulic servo pump control system (EHSPCS) is a volume control system that uses a permanent magnet synchronous motor (PMSM) with a fixed displacement pump to directly drive and control the hydraulic cylinder. The energy transmission law of the system is very complicated due to the transformation of electrical, mechanical and hydraulic energy as well as other energy fields, and qualitative analysis of the energy transfer efficiency is difficult. Energy transfer analysis of the EHSPCS under different working conditions and loads is proposed in this paper. First, the energy flow transfer mechanism was analyzed, and the mathematical and energy transfer models of the key components of the system were established to explore the energy characteristic state transition rule. Second, a power bond diagram model was built, its state equation and state matrix were deduced, and a system simulation model was built. Finally, combined with the EHSPCS experimental platform, simulation experiments were carried out on the dynamic position following and steady-state position holding conditions of the system, and the variation rules of the power of each energy characteristic state and the system energy transfer efficiency under different loads were obtained. The research results provide a foundation for the study of power matching and energy-saving mechanism of the EHSPCS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors:Xuefeng Liu;
Xuke Li; Yage Li; Haijun Zhang; +3 AuthorsXuefeng Liu
Xuefeng Liu in OpenAIREXuefeng Liu;
Xuke Li; Yage Li; Haijun Zhang; Quanli Jia; Shaowei Zhang;Xuefeng Liu
Xuefeng Liu in OpenAIREWen Lei;
Wen Lei
Wen Lei in OpenAIREdoi: 10.1002/eom2.12261
AbstractRevolutionary changes in energy storage technology have put forward higher requirements on next‐generation anode materials for lithium‐ion battery. Recently, a new class of materials with complex stoichiometric ratios, high‐entropy oxide (HEO), has gradually emerging into sight and embracing the prosperity. The ideal elemental adjustability and attractive synergistic effect make HEO promising to break through the integrated performance bottleneck of conventional anodes and provide new impetus for the design and development of electrochemical energy storage materials. Here, the research progress of HEO anodes is comprehensively reviewed. The driving force behind phase stability, the role of individual cations, potential mechanisms for controlling properties, as well as state‐of‐the‐art synthetic strategies and modification approaches are critically evaluated. Finally, we envision the future prospects and related challenges in this field, which will bring some enlightening guidance and criteria for researchers to further unlock the mysteries of HEO anodes.image
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Haiya Qian;
Qingshan Xu;Haiya Qian
Haiya Qian in OpenAIREYuanxing Xia;
Yuanxing Xia
Yuanxing Xia in OpenAIREPengwei Du;
+1 AuthorsPengwei Du
Pengwei Du in OpenAIREHaiya Qian;
Qingshan Xu;Haiya Qian
Haiya Qian in OpenAIREYuanxing Xia;
Yuanxing Xia
Yuanxing Xia in OpenAIREPengwei Du;
Jun Zhao;Pengwei Du
Pengwei Du in OpenAIREControl methods based on global positioning systems (GPS) are reported in multiple literatures recently, which achieve a fixed frequency operation of the microgrid and therefore has the tremendous benefit that any problems related to frequency instability are eliminated. However, the possible interruption of GPS timing signals may cause current circulating and finally leads to instability of the microgrid, yet it is largely neglected in literatures. This paper presents an angle synchronizing mechanism which utilizes the timing signal from GPS satellites and an auxiliary frequency droop loop to ensure synchronization during GPS offline events. Smooth transfer is guaranteed between primary and auxiliary control loops with discrete control architecture. Also, to allow microgrid using GPS-based control to work in tandem with the bulk power system or another frequency droop microgrid, an extra synchronization algorithm is proposed. The viability and performance of the proposed control structure is validated by case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Xiaolin Yang; Zhaoyang Liu; Jiayang Chen; Ying Kong; Wen Zheng; Jianjun Xia;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12273-021-0874-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12273-021-0874-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | ASCLEPIOSEC| ASCLEPIOSAuthors:Evgenia Psarra;
Evgenia Psarra
Evgenia Psarra in OpenAIREDimitris Apostolou;
Yiannis Verginadis; Ioannis Patiniotakis; +1 AuthorsDimitris Apostolou
Dimitris Apostolou in OpenAIREEvgenia Psarra;
Evgenia Psarra
Evgenia Psarra in OpenAIREDimitris Apostolou;
Yiannis Verginadis; Ioannis Patiniotakis;Dimitris Apostolou
Dimitris Apostolou in OpenAIREGregoris Mentzas;
Gregoris Mentzas
Gregoris Mentzas in OpenAIREEffective access control techniques are in demand, as electronically assisted healthcare services require the patient’s sensitive health records. In emergency situations, where the patient’s well-being is jeopardized, different healthcare actors associated with emergency cases should be granted permission to access Electronic Health Records (EHRs) of patients. The research objective of our study is to develop machine learning techniques based on patients’ time sequential health metrics and integrate them with an Attribute Based Access Control (ABAC) mechanism. We propose an ABAC mechanism that can yield access to sensitive EHRs systems by applying prognostic context handlers where contextual information, is used to identify emergency conditions and permit access to medical records. Specifically, we use patients’ recent health history to predict the health metrics for the next two hours by leveraging Long Short Term Memory (LSTM) Neural Networks (NNs). These predicted health metrics values are evaluated by our personalized fuzzy context handlers, to predict the criticality of patients’ status. The developed access control method provides secure access for emergency clinicians to sensitive information and simultaneously safeguards the patient’s well-being. Integrating this predictive mechanism with personalized context handlers proved to be a robust tool to enhance the performance of the access control mechanism to modern EHRs System.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11193040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11193040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu