Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4,259 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2016-2025
  • 2. Zero hunger
  • FR
  • KE
  • UA

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Long, Marc;
    Long, Marc
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Long, Marc in OpenAIRE
    Lelong, Aurélie; orcid bw Bucciarelli, Eva;
    Bucciarelli, Eva
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Bucciarelli, Eva in OpenAIRE
    orcid bw Le Grand, Fabienne;
    Le Grand, Fabienne
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Le Grand, Fabienne in OpenAIRE
    +2 Authors

    This dataset contains the data used in the manuscript "Physiological adaptation of the diatom Pseudo-nitzschia delicatissima under copper starvation" accepted for publication in April 2023 in Marine Environmental Research. In the open ocean and particularly in iron (Fe)-limited environment, copper (Cu) deficiency might limit the growth of phytoplankton species. Cu is an essential trace metal used in electron-transfer reactions, such as respiration and photosynthesis, when bound to specific enzymes. Some phytoplankton species, such as the diatom Pseudo-nitzschia spp. can cope with Cu starvation through adaptative strategies. This dataset contains the data collected during the experimental starvation of a strain of the diatom P. delicatissima under laboratory controlled conditions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.17882/94...
    Dataset . 2023
    License: CC BY NC
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SEANOE
    Dataset . 2023
    License: CC BY NC
    Data sources: SEANOE
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.17882/94...
      Dataset . 2023
      License: CC BY NC
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      SEANOE
      Dataset . 2023
      License: CC BY NC
      Data sources: SEANOE
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Ronald Tombe;
    Ronald Tombe
    ORCID
    Harvested from ORCID Public Data File

    Ronald Tombe in OpenAIRE
    orcid Hanlie Smuts;
    Hanlie Smuts
    ORCID
    Harvested from ORCID Public Data File

    Hanlie Smuts in OpenAIRE

    Sustainable agriculture is the backbone of food security systems and a driver of human well-being in global economic development (Sustainable Development Goal SDG 3). With the increase in world population and the effects of climate change due to the industrialization of economies, food security systems are under pressure to sustain communities. This situation calls for the implementation of innovative solutions to increase and sustain efficacy from farm to table. Agricultural social networks (ASNs) are central in agriculture value chain (AVC) management and sustainability and consist of a complex network inclusive of interdependent actors such as farmers, distributors, processors, and retailers. Hence, social network structures (SNSs) and practices are a means to contextualize user scenarios in agricultural value chain digitalization and digital solutions development. Therefore, this research aimed to unearth the roles of agricultural social networks in AVC digitalization, enabling an inclusive digital economy. We conducted automated literature content analysis followed by the application of case studies to develop a conceptual framework for the digitalization of the AVC toward an inclusive digital economy. Furthermore, we propose a transdisciplinary framework that guides the digitalization systematization of the AVC, while articulating resilience principles that aim to attain sustainability. The outcomes of this study offer software developers, agricultural stakeholders, and policymakers a platform to gain an understanding of technological infrastructure capabilities toward sustaining communities through digitalized AVCs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UP Research Data Rep...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2023
    Data sources: DOAJ
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UP Research Data Rep...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2023
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Meredith T. Niles; Meredith T. Niles; Jessica Rudnick; orcid Mark Lubell;
    Mark Lubell
    ORCID
    Harvested from ORCID Public Data File

    Mark Lubell in OpenAIRE
    +1 Authors

    Agricultural adaptation to climate change is critical for ensuring future food security. Social capital is important for climate change adaptation, but institutions and social networks at multiple scales (e.g., household, community, and institution) have been overlooked in studying agricultural climate change adaptation. We combine data from 13 sites in 11 low-income countries in East Africa, West Africa, and South Asia to explore how multiple scales of social capital relate to household food security outcomes among smallholder farmers. Using social network theory, we define three community organizational social network types (fragmented defined by lack of coordination, brokered defined as having a strong central actor, or shared defined by high coordination) and examine household social capital through group memberships. We find community and household social capital are positively related, with higher household group membership more likely in brokered and shared networks. Household group membership is associated with more than a 10% reduction in average months of food insecurity, an effect moderated by community social network type. In communities with fragmented and shared organizational networks, additional household group memberships is associated with consistent decreases in food insecurity, in some cases up to two months; whereas in brokered networks, reductions in food insecurity are only associated with membership in credit groups. These effects are confirmed by hierarchical random effects models, which control for demographic factors. This suggests that multiple scales of social capital—both within and outside the household—are correlated with household food security. This social capital may both be bridging (across groups) and bonding (within groups) with different implications for how social capital structure affects food security. Efforts to improve food security could recognize the potential for both household and community level social networks and collaboration, which further research can capture by analyzing multiple scales of social capital data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Sustain...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Sustainable Food Systems
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Sustainable Food Systems
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/a9...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/sx...
    Other literature type . 2021
    Data sources: Datacite
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Sustain...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Sustainable Food Systems
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Sustainable Food Systems
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/a9...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/sx...
      Other literature type . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Somda, Jacques; Zougmoré, Robert B.; Sawadogo, Issa; Bationo, B. André; +2 Authors

    This chapter focuses on the evaluation of adaptive capacities of community-level human systems related to agriculture and food security. It highlights findings regarding approaches and domains to monitor and evaluate behavioral changes from CGIAR’s research program on climate change, agriculture and food security (CCAFS). This program, implemented in five West African countries, is intended to enhance adaptive capacities in agriculture management of natural resources and food systems. In support of participatory action research on climate-smart agriculture, a monitoring and evaluation plan was designed with the participation of all stakeholders to track changes in behavior of the participating community members. Individuals’ and groups’ stories of changes were collected using most significant change tools. The collected stories of changes were substantiated through field visits and triangulation techniques. Frequencies of the occurrence of characteristics of behavioral changes in the stories were estimated. The results show that smallholder farmers in the intervention areas adopted various characteristics of behavior change grouped into five domains: knowledge, practices, access to assets, partnership and organization. These characteristics can help efforts to construct quantitative indicators of climate change adaptation at local level. Further, the results suggest that application of behavioral change theories can facilitate the development of climate change adaptation indicators that are complementary to indicators of development outcomes. We conclude that collecting stories on behavioral changes can contribute to biophysical adaptation monitoring and evaluation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2017 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://link.springer.com/cont...
    Part of book or chapter of book
    License: CC BY NC
    Data sources: UnpayWall
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2017 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://link.springer.com/cont...
      Part of book or chapter of book
      License: CC BY NC
      Data sources: UnpayWall
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zaake, Paul; Paul, Birthe K.; Marshall, Karen; orcid bw Notenbaert, An;
    Notenbaert, An
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Notenbaert, An in OpenAIRE
    +4 Authors

    There is limited attention to impacts of climate change on pigs in Uganda by stakeholders, despite the potential vulnerability of pigs to climate change. Pigs are sensitive to heat-stress, as they do not have functioning sweat glands as other livestock species do, and have small lungs which reduces their ability to disseminate heat by panting. The objectives of the study were to i) determine the heat-stress status in pigs, ii) analyze factors influencing heat-stress, and iii) explore the heat-stress adaptation options in Lira District, Uganda. Lira was selected because of presence of both rural & urban areas and expected heat stress throughout the year in the district. The data including household demographics, management systems, age, color, breeds, body/skin temperature, rectal temperature and others were collected from 104 households and 259 pigs during the hot months in Ojwina and Barr sub-counties- Lira district. We collected data on adaptation options during the four gender disaggregated focus group discussions. Weather data was collected during the time of administering the questionnaire, and it was complemented with data from Ngetta Meteorological Station, Lira. STATA, 14

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Harvard Dataverse
    Dataset . 2020
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research@WUR
    Dataset . 2020
    Data sources: Research@WUR
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Harvard Dataverse
      Dataset . 2020
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research@WUR
      Dataset . 2020
      Data sources: Research@WUR
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Castañeda, Irene;
    Castañeda, Irene
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Castañeda, Irene in OpenAIRE
    Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; +2 Authors

    Understanding variation in the diet of widely distributed species can help us to predict how they respond to future environmental and anthropogenic changes. We studied the diet of the red fox Vulpes vulpes, one of the world’s most widely distributed carnivores. We compiled dietary data from 217 studies at 276 locations in five continents to assess how fox diet composition varied according to geographic location, climate, anthropogenic impact and sampling method. The diet of foxes showed substantial variation throughout the species’ range, but with a general trend for small mammals and invertebrates to be the most frequently occurring dietary items. The incidence of small and large mammals and birds in fox diets was greater away from the equator. The incidence of invertebrates and fruits increased with mean elevation, while the occurrence of medium-sized mammals and birds decreased. Fox diet differed according to climatic and anthropogenic variables. Diet richness decreased with increasing temperature and precipitation. The incidence of small and large mammals decreased with increasing temperature. The incidence of birds and invertebrates decreased with increasing mean annual precipitation. Higher Human Footprint Index was associated with lower incidence of large mammals and higher incidence of birds and fruit in fox diet. Sampling method influenced fox diet estimation: estimated percentage of small and medium-sized mammals and fruit was lower in studies based on stomach contents, while large mammals were more likely to be recorded in studies of stomach contents than in studies of scats. Our study confirms the flexible and opportunistic dietary behaviour of foxes at the global scale. This behavioural trait allows them to thrive in a range of climatic conditions, and in areas with different degrees of human-induced habitat change. This knowledge can help place the results of local-scale fox diet studies into a broader context and to predict how foxes will respond to future environmental changes. Castañeda et al. 2022 Mammal Review (Variation in red fox Vulpes vulpes diet in five continents)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility12
    visibilityviews12
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jat, Hanuman Sahay; Kumar, Pardeep; Sutaliya, Jhabar Mal; Kumar, Satish; +3 Authors

    Continuous mono-cropping of rice-wheat (RW) system with conventional tillage (CT) based management practices have led to decline in soil health, groundwater table and farmers profit in north-west India. A medium-term (4 years) farmer’s participatory strategic research trial of basmati RW system was conducted to evaluate the effects of conservation agriculture (CA) based management practices on crop yields, water productivity, profitability and soil quality. Six treatments were compared varied in the cropping system, tillage, crop establishment and residue management. CA-based management under zero-till direct seeded rice-wheat-mungbean recorded 36% higher system yield than conventional till rice-wheat system (14.91 Mg ha−1). CA-based rice-wheat system and rice-wheat-mungbean system saved ~35% irrigation water compared to conventional RW system (2168 mm ha−1). Total water productivity (WPI+R) was improved by 67% with CA-based rice-wheat-mungbean system (0.90 kg grain m−3) over the conventional system. On system basis, 42% higher net return was recorded with CA-based rice-wheat-mungbean system compared to conventional system (USD 2570 ha−1). Mungbean integration in basmati RW system contributed 29% share in system net returns across the treatments. Soil chemical and biological properties were improved by ~40% and 150%, respectively, with CA-based management system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    figshare
    Other literature type . 2019
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    figshare
    Other literature type . 2019
    License: CC BY
    Data sources: Datacite
    Archives of Agronomy and Soil Science
    Article . 2019 . Peer-reviewed
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    gold
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      figshare
      Other literature type . 2019
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      figshare
      Other literature type . 2019
      License: CC BY
      Data sources: Datacite
      Archives of Agronomy and Soil Science
      Article . 2019 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abonesh Tesfaye; orcid James Hansen;
    James Hansen
    ORCID
    Harvested from ORCID Public Data File

    James Hansen in OpenAIRE
    Girma Tesfahun Kassie; Maren Radeny; +1 Authors

    Abstract This study estimated the economic value of agricultural climate services for strengthening the resilience of smallholder farmers to climate variability and risks in Ethiopia. Using a choice experiment approach, the study introduced a hypothetical package of improved climate services to 600 randomly selected smallholder farmers in three districts across three different agro-ecological zones in the Oromia Regional State. A generalized multinomial logit (G-MNL) model was used to estimate preferred attributes of climate services and willingness-to-pay (WTP) values. The results show that the preferred bundle of improved climate services among smallholder farmers was one that could be communicated in short text message system, provided along with credit facility, and market information and one that favors participatory decision making by smallholders. The results further reveal that the WTP value exhibited high implicit price for participatory decision-making. The study sheds light on important characteristics of agricultural climate services that may improve their acceptability and usability among smallholders. It also highlights the importance of packaging additional services including digital and ICT-based solutions, financial and market information along with climate services to promote demand-driven last mile delivery systems. Engaging smallholder farmers in a participatory manner in the decision-making process can help them make informed decision.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecological Economics
    Article
    License: CC BY ND
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    21
    citations21
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecological Economics
      Article
      License: CC BY ND
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Øystein Strengehagen Klemetsdal;
    Øystein Strengehagen Klemetsdal
    ORCID
    Harvested from ORCID Public Data File

    Øystein Strengehagen Klemetsdal in OpenAIRE
    Øystein Strengehagen Klemetsdal; orcid Antonio Pio Rinaldi;
    Antonio Pio Rinaldi
    ORCID
    Harvested from ORCID Public Data File

    Antonio Pio Rinaldi in OpenAIRE
    Halvor Møll Nilsen; +5 Authors

    <p>High temperature aquifer thermal energy storage (HT-ATES) can play a key role for a sustainable interplay between different energy sources and in the overall reduction of CO<sub>2</sub>emission. In this study, we numerically investigate the thermo-hydraulic processes of an HT-ATES in the Greater Geneva Basin (Switzerland). The main objective is to investigate how to handle the yearly excess of heat produced by a nearby waste-to-energy plant. We consider potential aquifers located in different stratigraphic units and design the model from available geological and geophysical data. Aquifer properties, flow conditions and well strategies are successively tested to evaluate their influence on the HT-ATES economic performance and environmental impact. This was achieved using a new open-access, user-friendly and efficient code that we also introduce here as a possible tool for geothermal applications.</p><p> </p><p>The results highlight the importance of thorough numerical simulations based on more realistic exploitation when designing HT-ATES systems. We show that relations between thermal performance and the shape of the injected thermal volume are generally hard to derive when complex well schedules are imposed because the injected/produced volumes may not be equal. Despite more complex storage strategies to comply with legal regulations, the shallower group of investigated aquifers in this study remains economically more suitable for storage up to 90ºC. In average four well doublets will be required to store the yearly excess of energy. The deeper group of investigated aquifers, however, become interesting for storage at higher temperatures.</p>

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut national de...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geothermics
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geothermics
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.5194/egusph...
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut national de...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geothermics
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geothermics
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.5194/egusph...
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Svitlana Bila;

    Actual importance of research theme: Combating hunger and providing the Earth’s population with sufficient amount of products is considered one of the strategic priorities of human civilization sustainable development by the UN up to 2030. The rapid growth of this planet’s human population in the 21st century, estimated at 7.6. billion people, leads to the global demand for production and foodstuff. Simultaneously, traditional strategies of extensive development conventional in the 20th century and “target” intensification of agriculture do not take expected positive effect nowadays. World economy requires for new strategies of agricultural production, as well as promoting ‘green revolution’ based on the ground of IT technology advances and “Industry 4.0.”. The generalization of world experience concerning development and implementing agricultural production strategies in the 21st century is of greater theoretical and practical importance for all countries which export agricultural production in mass scales, including Ukraine which focuses on the leadership in the world agricultural business. Thus, the urgency of the issue confirms the actual importance of this article. The problem statement. Foodstuff output in world economy is growing slowly and does not meet the increasing demand for food and agricultural products in industry in global scales. Under these conditions the manufacturers of agricultural products like farmers, agro-businesses and agro-holdings, as well as transnational corporation alter and modify agricultural strategies that were conventional in the 20th century. Among the new strategies transition to precision farming and innovational agriculture based on implementing IT technologies takes the leading role. The core and socio-economic consequences of such strategy implementation require further study. Analysis of latest studies and publication. The important contribution to the study of the core and dimensions of agricultural production strategies linked to innovation and investment development as well as to improvement property relations is made by such Ukrainian scholars as P. Makarenko, V. Pilyavskiy [1] and O. Shul’ga [2]. Foreign scientists like Smaller, C., andW. Speller, withH. Mirza, N. Bernasconi-Osterwalder, andG. Dixie [3] paid the specific attention to the study of strategic priorities concerning risks minimization and profit maximization by agro-businesses and TNC within the realization of agricultural contracts at world markets. Overseas researchers KeatingB., HerreroM., CarberryP. [4] emphasized on actual importance of compliance with strategy of foodstuff security in global environment in their studies. However, the issue of developing the strategy of precise agricultural production based on widespread use of innovation and IT technologies, research into socio-economic consequences accompanying their implementation in the 21st century remains poorly studied. Research challenge of general issue. The issue of studies the core and elements of agricultural production development process in world economy is highlighted in world economic literature pretty well. Nevertheless, the study of TNCs and agricultural businesses strategies and strategies concerning transition of TNCs to the development of precise agriculture is really meaningful. Besides, at present time the trends of direct foreign investments as for agricultural lands purchase and priorities analysis of their use by TNCs in developed and developing world countries are uncertain. Socio economic consequences of mass precise agriculture introduction for national economy in countries with agrarian specialization also require detailed researching. Problem statement, objective of research. The objective of research is to highlight the core and define the regularity of formation, as well as emphasize the basic expected socio-economic consequences of precise agriculture development strategy implementing on the grounds of generalization the world experience of agricultural TNC sactivity. To achieve the objective set the article aimed at solution the following tasks: to note the main ‘players’ at the world agricultural market and study the priorities of their economic activity; to study the core and the elements of ‘green revolution’ strategy, as well as strategy of transition to precise agricultural production based on implementing innovations and IT technologies; to define strategic goals of TNCs as for the use of acquiring land ( at the cost of direct foreign investments) on the grounds of generalization developed and developing countries experience; to point out the expected socio-economic consequences of mass implementation of precise agricultural production strategies by TNCs and national agro-businesses for the economy of the countries specialized in agriculture. Method and methodology of the study. While studying the world experience of implementation the precise agricultural production development strategies theoretical and empirical methods of scientific research were employed. Historical and logical methods, abstract and specific methods, methods of analysis and synthesis, as well as causal (cause-and-effect) method were applied in the article to define strategic priorities of agricultural business and agricultural TNC specialization, to point out expected socio-economic consequences of mass transition to precise agricultural production in the countries with agrarian specialization. Synergetic approach, method of expert estimates and casual methods were applied to ground “green revolution” strategy, as well as strategy of TNCs as for transition to precise agriculture based on innovations and IT technologies. The results of study. Agricultural production is presented by farmers, households, state agricultural sector, national agro-businesses and agro-holdings, international TNCs. As a rule, farms are focused on domestic market; they specialize in production of minor parties of manual crop production and horticulture, grow vegetables, fruit and berries, as well as they are engaged in poultry farming, beekeeping, dairy production, stockbreeding in rather small scales. The farmers in developed world countries, particularly EU countries, concentrate on organic production which is of high demand among middle-class representatives. In EU countries farming is traditionally supported by the state, as it bears both economic and social valuable functions, i.e. assists in rural development and creates workplaces in countryside. The main stakeholders at the mass agricultural market in the world are considered large national and international agro-holdings an TNCs specialized in agricultural production and its industrial processing. TNCs shaped the closed loop – from selection to agricultural production, from its processing to its manufacturing. At the cost of large production scales, as well as capital concentration and centralization it is the agricultural TNCs which leads in production and export of foodstuffs at world markets. TNCs ‘ leadership at world agriculture markets is grounded on ‘green revolution’ strategy implementing, which consists of such elements as innovations, bio-selection to produce performance breed, intensive growth in crop productivity, including the one using GMO which makes cropping insensitive to water shortage, high temperatures and droughts. Agrarian TNCs in the 21st century actively implement the strategies of transition to precise agriculture based on the use of innovations and IT technologies. As the world experience confirms, strategies of transition to precise agriculture combine the following innovations: astronaut and aviation technologies, unmanned technologies, unmanned aerial vehicles; mass transition to the use of apparatus to analyze the ground online; spreading of “agro-scouting” innovation technologies as for field information gathering concerning the condition and development of agriculture; implementation intellectual system of managerial decision-making support; introduction of monitoring and control auto-system and implementation of IT-system as for account of agriculture process elements. The development of precise agriculture for national world economies which are agriculture-based offers a lot of benefits, such as: increase in labor productivity in agriculture; the decrease in employment that saves working capital of agro-businesses; industrialization and technical renovation of agrarian sector which promotes the market for IT products, precise machine building; increase in commerce and export potential of the country, mainly, in the sphere of monostructural crop production (grain, corn, soya, raps, oilseeds etc.). Such strategies also provide revitalization of direct foreign investment processes by TNCsconcerning purchasing farmland in the developing countries with their further listing as raw materials supplier for TNCs. The latter shape and control international links of production value added to all kinds of agricultural products. Among the risks which implementation of precise agriculture strategies bear for national developing country’s economy which are agriculture-based the following should be mentioned: risks concerning decrease in farms and decline in production of labor-intensive small-scale agriculture products (vegetables, fruit, honey etc.); risks of jobs recession and, respectively, the number of rural population and others. There are also other risks linked to these processes like risks of growing volumes of ready foodstuffs import, chronic scarcity of state budget and increase in internal debt, enhancing migration processes etc. In case of falling world prices for foodstuffs and worsening global conditions for agriculture products, including agrarian raw materials, in particular, due to another world economic crisis, the abandonment of occasional farmland purchased by TNCs in developing agrarian countries, their further freezing and ceasing the processing for better times should not be excluded. Under such circumstances the risks of famine for countries which could lose the managerial control over own land resources are also a threatening exercise as for implementing such TNC strategy. The field of results application. International economic relations and world economy, development of agriculture competitive strategies in world countries and agrarian TNCs in world economy. Conclusions. Farms, agro-businesses, agro-holdings and agrarian TNCs are the economic centres of mass agriculture production in all world countries. Farms are mainly specialized in labour-intensive small-scale agriculture production like horticulture, gardening, bee-keeping etc. Large agro-businesses and agrarian TNCs choose the strategy of specializing in mass monostructural agriculture production such as crop production (grain, corn, soya beans and industrial crops). In developed world countries TNCs apply the strategy of farmlands multi-purpose use, including the goals aimed at development and processing livestock and crop production; at development of renewable energy and bio-energy. In developed world countries TNCs focus on processing all kinds of agriculture products and foodstuffs production with high value added. Purchasing of farmlands by TNCs in developing countries, in particular, at the cost of direct foreign investment, provides for implementation the strategy of purchased lands engagement, mainly, to develop crop production as a raw basis for their further processing in the native countries for TNCs. The general world trend of agrarian TNCs development is use of innovation technologies, transition to precise agriculture based on IT technologies, aviation and astronautic technologies, unmanned aerial vehicles and other innovations which positively impact labor productivity and mass industrial production profitability, as well as choose transition to monostructural agrarian specialization as a priority, but bear a set of social risks for developing countries’ economies. Transition of Ukrainian agro-businesses and agro-holdings to the strategy of precise agriculture development based on innovations and IT technologies provides Ukraine’s competitiveness at the world agrarian markets. This process should go hand-in-hand with land reform taking into account Ukrainian farming interests. Establishing industrial processing of agriculture raw products and production of ready foodstuffs with high value added should be strategic for Ukraine.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Економічний вісник у...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Економічний вісник університету
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Економічний вісник у...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Економічний вісник університету
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim