- home
- Advanced Search
- Energy Research
- GB
- NL
- UA
- Energy Research
- GB
- NL
- UA
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Kermeli, Katerina and Crijns-Graus, Wina;Data set with reference scenarios. As it is not possible to include the entire dataset in this report, we only include two Tables on final energy demand. Table 1 shows the Final Energy Demand projections per industrial subsector and EU28 country in the Reference Scenario and Table 2 the Final Energy Demand projections per industrial subsector and EU28 country in the Frozen Efficiency Scenario. The full dataset, including physical production (in ktonnes) and fuel and electricity demand (in TJ) per industrial sub-sector, per fuel type and per EU 28 country is available upon request to the project coordinator.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 167visibility views 167 download downloads 128 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:UKRI | Hydrogen Infrastructure U...UKRI| Hydrogen Infrastructure Uncertainty Management for Heat DecarbonisationAuthors: Vassilis M. Charitopoulos; Mathilde Fajardy; Chi Kong Chyong; David M. Reiner;Input data set for OPHELIA optimisation model investigating optimal heat decarbonization pathways through electrification for net zero economy in Great Britain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6022815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6022815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 04 Jun 2015Publisher:Dryad Piper, Adam T.; Manes, Costantino; Siniscalchi, Fabio; Marion, Andrea; Wright, Rosalind M.; Kemp, Paul S.;doi: 10.5061/dryad.c77jn
Anthropogenic structures (e.g. weirs and dams) fragment river networks and restrict the movement of migratory fish. Poor understanding of behavioural response to hydrodynamic cues at structures currently limits the development of effective barrier mitigation measures. This study aimed to assess the effect of flow constriction and associated flow patterns on eel behaviour during downstream migration. In a field experiment, we tracked the movements of 40 tagged adult European eels (Anguilla anguilla) through the forebay of a redundant hydropower intake under two manipulated hydrodynamic treatments. Interrogation of fish trajectories in relation to measured and modelled water velocities provided new insights into behaviour, fundamental for developing passage technologies for this endangered species. Eels rarely followed direct routes through the site. Initially, fish aligned with streamlines near the channel banks and approached the intake semi-passively. A switch to more energetically costly avoidance behaviours occurred on encountering constricted flow, prior to physical contact with structures. Under high water velocity gradients, fish then tended to escape rapidly back upstream, whereas exploratory ‘search’ behaviour was common when acceleration was low. This study highlights the importance of hydrodynamics in informing eel behaviour. This offers potential to develop behavioural guidance, improve fish passage solutions and enhance traditional physical screening. Fish_detections_UL_CHFish positions derived from acoustic telemetry contained within excel file with 5 columns. 'Record' denotes tag detection numbered consecutively in sequence; 'tag_number' denotes the fish identification number; ‘PosX’ denotes fish x coordinate in UTM; ‘PosY’ denotes fish y coordinate in UTM, ‘Treatment’ denotes experimental treatment
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Giacomo Falchetta; Enrica De Cian; Ian Sue Wing; Deborah Carr;# Replication code and data for: Aging in a warming world: global projections of cumulative and acute heat exposure of older adults By Giacomo Falchetta, Enrica De Cian, Ian Sue Wing and Deborah Carr Software requirements: - R v4.3+: https://cran.r-project.org/bin/windows/base/ - RStudio: v2023.06.0+: https://posit.co/download/rstudio-desktop/ - Package dependencies: raster, sf, tidyverse, rasterVis, rgdal, maptools, pbapply, terra, knitr, kableExtra, modelsummary, openxlsx, xtable, ggforce, maptools, weights, spatstat, rworldmap, scales, patchwork, stars, viridis, devtools, stargazer, readxl, nominatimlite, urbnmapr To replicate the analysis: - Clone the replication code repository from https://github.com/giacfalk/aging_climate - Download input data from this Zenodo data repository - Download all the 1km age and gender-stratified global population counts rasters from the following WorldPop page https://hub.worldpop.org/geodata/summary?id=24798 and put them in a subdirectory of the working directory called "AGEPOP" - Run the "project_pop.R" script to generate gridded age-stratified population data for each SSP scenario - Run the "compare_pop_projections.R" file to compare the generated gridded age-stratified population data with an array of pre-existing sources from different countries and produce a summary comparison table (NOTE: before running the script, decompress the "new_comparison_data.zip" folder into the working directory) - Run "projections_exposure_m.R" to quantify heat exposure and generate the figures and tables reported in the paper To process the data and run succesfully, the script requires a computer with at least 32GB RAM. The running time varies based on CPU characteristics, but a runtime of at least 2 hours should be expected to generate all the output data, figures, and tables. All output files are saved in the working directory. Manuscript under peer review. Upon publication, a link to the paper will be made available at this repository. ___ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8409700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8409700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Junior, Celso H. L. Silva; Heinrich, Viola H. A.; Freire, Ana T. G.; Broggio, Igor S.; +8 AuthorsJunior, Celso H. L. Silva; Heinrich, Viola H. A.; Freire, Ana T. G.; Broggio, Igor S.; Rosan, Thais M.; Doblas, Juan; Anderson, Liana O.; Rousseau, Guillaume X.; Shimabukuro, Yosio E.; Silva, Carlos A.; House, Joanna I.; Aragão, Luiz E. O. C.;We discontinued this version of the dataset.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3734980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3734980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 NetherlandsPublisher:Universität Hamburg Authors: Mol, Wouter; Heusinkveld, Bert;This dataset contains measurements of downwelling short wave irradiance, measured in a small scale grid setup at Falkenberg: 20 sensors in 4 by 5 grid with a 50 meter grid spacing. Another 4 sensors were placed in all direction about 5 km away from the main grid at Falkenberg. The sampling rate is 10 Hz, to catch all irradiance variability, and is calibrated against a high quality sun tracker. The strength of this dataset is not the absolute accuracy, but rather the spatial measurements and ability to catch variability. Quality: Accuracy is estimated to be within 5% of a conventional pyranometer. Quality varies depending on weather type, but is best for high solar elevation angles (solar noon +/- 4 hours). Data is manually quality controlled, with detailed quality flags included in the dataset. Some anomalous data is not caught, in particular noisy data due to many insects on the sensor or small dirt from birds that reduces the signal slightly. These effects are much smaller than the driving weather patterns. The data is unsuitable for calculating radiation balances, but it is particularly useful for studying variability and patterns of solar irradiance on small scales. Funding: Dutch Research Council (NWO), Shedding Light On Cloud Shadows: VI.Vidi.192.068 Project: FESSTVaL (Field Experiment on submesoscale spatio-temporal variability in Lindenberg), a measurement campaign initiated by the Hans-Ertel-Center for Weather Research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25592/uhhfdm.10273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25592/uhhfdm.10273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gordon McFadzean; Ciaran Gilbert; Jethro Browell;Outputs from the Network Innovation Allowance project "Control REACT" (workstream 2), sponsored by National Grid Electricity System Operator (NGESO). This deposit contains underlying data used in this project. The R code (Rmarkdown) and html renders of these workbooks are available in a separate deposit linked below. See description there for further details. In order to run the R scripts, data and code must be arranged in the directory structure given in "Directory Structure.pdf". Wind, solar and net-demand data are derived from raw data made available by Elexon and Solar Sheffield via public APIs. See respective websites for details, our processed (aggregated and cleaned) versions of this data are shared here under a CC-BY license. Weather forecast data are derived from historic operational forecasts from the ECMWF HRES model and are shared under a CC-BY licence. For details on how these were processed please see references. {"references": ["J. Browell and M. Fasiolo, \"Probabilistic Forecasting of regional net-load with conditional extremes and gridded NWP\", IEEE Transactions on Smart Grid, vol. 12, no, 6, pp. 5011-5019, 2021", "C. Gilbert \"Topics in high dimensional energy forecasting\", J. Browell & D. McMillan, degree supervisors; Centre for Doctoral Training in Wind and Marine Energy Systems; Department of Electronic and Electrical Engineering Thesis [PhD] 2021"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 United KingdomPublisher:University College London Pullinger, Martin; Few, Jessica; McKenna, Eoghan; Elam, Simon; Webborn, Ellen; Oreszczyn, Tadj;This is a set of aggregated data tables that underly the key figures in the SERL stats report "Smart Energy Research Lab: Energy use in GB domestic buildings 2021" (Volume 1). The report describes domestic gas and electricity energy use in Great Britain in 2021 based on data from the Smart Energy Research Lab (SERL) Observatory, which consists of smart meter and contextual data from approximately 13,000 homes that are broadly representative of the GB population in terms of region and Index of Multiple Deprivation (IMD) quintile. The report shows how residential energy use in GB varies over time (monthly over the year and half-hourly over the course of the day), with occupant characteristics (number of occupants, tenure), property characteristics (age, size, form, and Energy Performance Certificate (EPC)), by type of heating system, presence of solar panels and of electric vehicles, and by weather, region and IMD quintile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Kermeli, Katerina and Crijns-Graus, Wina;Data set with reference scenarios. As it is not possible to include the entire dataset in this report, we only include two Tables on final energy demand. Table 1 shows the Final Energy Demand projections per industrial subsector and EU28 country in the Reference Scenario and Table 2 the Final Energy Demand projections per industrial subsector and EU28 country in the Frozen Efficiency Scenario. The full dataset, including physical production (in ktonnes) and fuel and electricity demand (in TJ) per industrial sub-sector, per fuel type and per EU 28 country is available upon request to the project coordinator.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 167visibility views 167 download downloads 128 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4266164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:UKRI | Hydrogen Infrastructure U...UKRI| Hydrogen Infrastructure Uncertainty Management for Heat DecarbonisationAuthors: Vassilis M. Charitopoulos; Mathilde Fajardy; Chi Kong Chyong; David M. Reiner;Input data set for OPHELIA optimisation model investigating optimal heat decarbonization pathways through electrification for net zero economy in Great Britain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6022815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6022815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 04 Jun 2015Publisher:Dryad Piper, Adam T.; Manes, Costantino; Siniscalchi, Fabio; Marion, Andrea; Wright, Rosalind M.; Kemp, Paul S.;doi: 10.5061/dryad.c77jn
Anthropogenic structures (e.g. weirs and dams) fragment river networks and restrict the movement of migratory fish. Poor understanding of behavioural response to hydrodynamic cues at structures currently limits the development of effective barrier mitigation measures. This study aimed to assess the effect of flow constriction and associated flow patterns on eel behaviour during downstream migration. In a field experiment, we tracked the movements of 40 tagged adult European eels (Anguilla anguilla) through the forebay of a redundant hydropower intake under two manipulated hydrodynamic treatments. Interrogation of fish trajectories in relation to measured and modelled water velocities provided new insights into behaviour, fundamental for developing passage technologies for this endangered species. Eels rarely followed direct routes through the site. Initially, fish aligned with streamlines near the channel banks and approached the intake semi-passively. A switch to more energetically costly avoidance behaviours occurred on encountering constricted flow, prior to physical contact with structures. Under high water velocity gradients, fish then tended to escape rapidly back upstream, whereas exploratory ‘search’ behaviour was common when acceleration was low. This study highlights the importance of hydrodynamics in informing eel behaviour. This offers potential to develop behavioural guidance, improve fish passage solutions and enhance traditional physical screening. Fish_detections_UL_CHFish positions derived from acoustic telemetry contained within excel file with 5 columns. 'Record' denotes tag detection numbered consecutively in sequence; 'tag_number' denotes the fish identification number; ‘PosX’ denotes fish x coordinate in UTM; ‘PosY’ denotes fish y coordinate in UTM, ‘Treatment’ denotes experimental treatment
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Giacomo Falchetta; Enrica De Cian; Ian Sue Wing; Deborah Carr;# Replication code and data for: Aging in a warming world: global projections of cumulative and acute heat exposure of older adults By Giacomo Falchetta, Enrica De Cian, Ian Sue Wing and Deborah Carr Software requirements: - R v4.3+: https://cran.r-project.org/bin/windows/base/ - RStudio: v2023.06.0+: https://posit.co/download/rstudio-desktop/ - Package dependencies: raster, sf, tidyverse, rasterVis, rgdal, maptools, pbapply, terra, knitr, kableExtra, modelsummary, openxlsx, xtable, ggforce, maptools, weights, spatstat, rworldmap, scales, patchwork, stars, viridis, devtools, stargazer, readxl, nominatimlite, urbnmapr To replicate the analysis: - Clone the replication code repository from https://github.com/giacfalk/aging_climate - Download input data from this Zenodo data repository - Download all the 1km age and gender-stratified global population counts rasters from the following WorldPop page https://hub.worldpop.org/geodata/summary?id=24798 and put them in a subdirectory of the working directory called "AGEPOP" - Run the "project_pop.R" script to generate gridded age-stratified population data for each SSP scenario - Run the "compare_pop_projections.R" file to compare the generated gridded age-stratified population data with an array of pre-existing sources from different countries and produce a summary comparison table (NOTE: before running the script, decompress the "new_comparison_data.zip" folder into the working directory) - Run "projections_exposure_m.R" to quantify heat exposure and generate the figures and tables reported in the paper To process the data and run succesfully, the script requires a computer with at least 32GB RAM. The running time varies based on CPU characteristics, but a runtime of at least 2 hours should be expected to generate all the output data, figures, and tables. All output files are saved in the working directory. Manuscript under peer review. Upon publication, a link to the paper will be made available at this repository. ___ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8409700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8409700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Junior, Celso H. L. Silva; Heinrich, Viola H. A.; Freire, Ana T. G.; Broggio, Igor S.; +8 AuthorsJunior, Celso H. L. Silva; Heinrich, Viola H. A.; Freire, Ana T. G.; Broggio, Igor S.; Rosan, Thais M.; Doblas, Juan; Anderson, Liana O.; Rousseau, Guillaume X.; Shimabukuro, Yosio E.; Silva, Carlos A.; House, Joanna I.; Aragão, Luiz E. O. C.;We discontinued this version of the dataset.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3734980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3734980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 NetherlandsPublisher:Universität Hamburg Authors: Mol, Wouter; Heusinkveld, Bert;This dataset contains measurements of downwelling short wave irradiance, measured in a small scale grid setup at Falkenberg: 20 sensors in 4 by 5 grid with a 50 meter grid spacing. Another 4 sensors were placed in all direction about 5 km away from the main grid at Falkenberg. The sampling rate is 10 Hz, to catch all irradiance variability, and is calibrated against a high quality sun tracker. The strength of this dataset is not the absolute accuracy, but rather the spatial measurements and ability to catch variability. Quality: Accuracy is estimated to be within 5% of a conventional pyranometer. Quality varies depending on weather type, but is best for high solar elevation angles (solar noon +/- 4 hours). Data is manually quality controlled, with detailed quality flags included in the dataset. Some anomalous data is not caught, in particular noisy data due to many insects on the sensor or small dirt from birds that reduces the signal slightly. These effects are much smaller than the driving weather patterns. The data is unsuitable for calculating radiation balances, but it is particularly useful for studying variability and patterns of solar irradiance on small scales. Funding: Dutch Research Council (NWO), Shedding Light On Cloud Shadows: VI.Vidi.192.068 Project: FESSTVaL (Field Experiment on submesoscale spatio-temporal variability in Lindenberg), a measurement campaign initiated by the Hans-Ertel-Center for Weather Research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25592/uhhfdm.10273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25592/uhhfdm.10273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gordon McFadzean; Ciaran Gilbert; Jethro Browell;Outputs from the Network Innovation Allowance project "Control REACT" (workstream 2), sponsored by National Grid Electricity System Operator (NGESO). This deposit contains underlying data used in this project. The R code (Rmarkdown) and html renders of these workbooks are available in a separate deposit linked below. See description there for further details. In order to run the R scripts, data and code must be arranged in the directory structure given in "Directory Structure.pdf". Wind, solar and net-demand data are derived from raw data made available by Elexon and Solar Sheffield via public APIs. See respective websites for details, our processed (aggregated and cleaned) versions of this data are shared here under a CC-BY license. Weather forecast data are derived from historic operational forecasts from the ECMWF HRES model and are shared under a CC-BY licence. For details on how these were processed please see references. {"references": ["J. Browell and M. Fasiolo, \"Probabilistic Forecasting of regional net-load with conditional extremes and gridded NWP\", IEEE Transactions on Smart Grid, vol. 12, no, 6, pp. 5011-5019, 2021", "C. Gilbert \"Topics in high dimensional energy forecasting\", J. Browell & D. McMillan, degree supervisors; Centre for Doctoral Training in Wind and Marine Energy Systems; Department of Electronic and Electrical Engineering Thesis [PhD] 2021"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 United KingdomPublisher:University College London Pullinger, Martin; Few, Jessica; McKenna, Eoghan; Elam, Simon; Webborn, Ellen; Oreszczyn, Tadj;This is a set of aggregated data tables that underly the key figures in the SERL stats report "Smart Energy Research Lab: Energy use in GB domestic buildings 2021" (Volume 1). The report describes domestic gas and electricity energy use in Great Britain in 2021 based on data from the Smart Energy Research Lab (SERL) Observatory, which consists of smart meter and contextual data from approximately 13,000 homes that are broadly representative of the GB population in terms of region and Index of Multiple Deprivation (IMD) quintile. The report shows how residential energy use in GB varies over time (monthly over the year and half-hourly over the course of the day), with occupant characteristics (number of occupants, tenure), property characteristics (age, size, form, and Energy Performance Certificate (EPC)), by type of heating system, presence of solar panels and of electric vehicles, and by weather, region and IMD quintile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu