- home
- Advanced Search
- Energy Research
- other engineering and technologies
- 7. Clean energy
- 2. Zero hunger
- UA
- Energy Research
- other engineering and technologies
- 7. Clean energy
- 2. Zero hunger
- UA
description Publicationkeyboard_double_arrow_right Conference object 2022 CroatiaPublisher:IEEE Authors: Kvaternik, Karlo; Pavković, Danijel; Kozhushko, Yuliia; Cipek Mihael;This paper presents the design of an extended Kalman filter (EKF) as a state-of-charge (SoC) estimator for a lithium–titanate (LTO) battery cell. The design is based on a Thevenin model of the equivalent battery electrical circuit with two parallel resistive-capacitive (RC) elements for the emulation of electrolyte polarization effects. The effectiveness of the proposed SoC estimator is verified through computer simulations on the comprehensive nonlinear battery simulation model featuring battery parameter vs. SoC variations, which is subject to highly dynamic loading regimes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/sst555...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2022Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/sst55530.2022.9954682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/sst555...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2022Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/sst55530.2022.9954682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Silesian University of Technology Authors: Oleksandr Mytrofanov; Arkadii Proskurin; Andrii Poznanskyi;doi: 10.21307/tp-2021-014
A schematic diagram of a transport hybrid power plant using a new design RPE-4.4/1.75 rotary piston air engine is proposed. Its external speed characteristic is determined, according to which the maximum engine power is 8.75 kW at 850 rpm and the maximum torque is 127.54 N∙m at 400 rpm. For various gears and speeds, all the components of the power balance were determined and the dynamic characteristic of the hybrid car was obtained when operated on an air engine. According to the dependences of the power balance, the total traction force from the rotary piston air engine on the driving wheels is 5 kN. The performance of acceleration of a hybrid car while working on an air engine is estimated, namely, the dependences of acceleration, time,and acceleration path are obtained. In urban traffic, the required time to accelerate the car to a speed of 60 km/h is 15.2 s and the path is 173 m. The possible drive range of the hybrid car on compressed air without additional recharging is analyzed. On one cylinder with compressed air with a volume of 100 liters, an initial pressure of 35 MPa, and a final pressure of 2 MPa, the hybrid car can travel about 26 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21307/tp-2021-014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21307/tp-2021-014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Mykola Zablodskiy; Volodymyr Gritsyuk; Volodymyr Kozyrskiy;The calculation of parameters of electromechanical converter of a multimodule structure with a common hollow massive rotor was submitted. The structure of high-performance electromechanical converter was shown, which includes not only the elements that perform the basic functions of energy conversion of one type into another and provide biomass being processed by fractional, formative and humidity parameters, but also implements a number of related physical and chemical effects to give new properties of biomass and increase the commercial value of the product. Since the material being processed is simultaneously a load-cooling material, the heat transfer and mechanical loading of the brake and motor module are interrelated. Results of industrial tests of the converter are presented. Comparison of experimental and calculated parameters and characteristics as a whole show good convergence of the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mees.2017.8248863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mees.2017.8248863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Authors: Andrii Radchenko; Mykola Radchenko; Andrii Konovalov; Anatolii Zubarev;An advanced scavenge air cooling system for reciprocating gas engines of integrated energy system for combined electricity, heat and refrigeration generation has been developed. New method of deep scavenge air cooling and stabilizing its temperature at increased ambient air temperatures and three-circuit scavenge air cooling system with absorption lithium-bromide chiller and wet-type cooling tower was proposed. Such cooling method does not require essential constructive changes in the existing scavenge air cooling system but only an addition heat exchanger for chilling scavenge air cooling water of scavenge air low-temperature intercooler closed contour by absorption chiller. A chilled water from absorption chiller is used as a coolant. To evaluate the effect of gas engine scavenge air deeper cooling compared with its typical radiator cooling, data on the dependence of fuel consumption and power output of gas engine on ambient air temperature at the inlet of the radiator are analized. The efficiency of engine scavenge air deep cooling at increased ambient air temperatures was estimated by reducing the gas fuel consumption compared with radiator cooling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20187003011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20187003011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Royal Society of Chemistry (RSC) Thomas Len; Viviana Bressi; Alina M. Balu; Tetiana Kulik; Olena Korchuganova; Borys Palianytsia; Claudia Espro; Rafael Luque;doi: 10.1039/d2gc02631g
handle: 11570/3248656
Thermokinetics of Biochar production.
Archivio Istituziona... arrow_drop_down Green ChemistryArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2gc02631g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Green ChemistryArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2gc02631g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing A. Kalwar; F. Kurdziel; Stanislaw Gumula; Uliana Marikutsa; D Korpyljov; Krzysztof Pytel;Abstract The publication presents the impact of using automatic control systems for operating gas engines aimed at a chilled water production. The purpose of the work is to analyse the possibilities of using automation systems to regulate gas flow. An important parameter of fuel supplied to gas engines used in the production of cold is its amount, which depends on the pressure. Unstable operation of gas distribution systems caused by an extensive network, many customers and operation of devices working with different loads causes improper, unpredictable operation of other devices working in the network. Uncertainty of fuel parameters results in unstable operation of gas engines, their load, and variable production of electricity, heat and cold. Ensuring proper and stable production is a key element of production processes. The concept of building a gas pressure regulation system based on its amount in the network will ensure the required, stable operation of gas engines and refrigeration units coupled with them, and thus provide a guarantee of production of generated media. The presented solution provides a solution to existing problems. The system is based on two dampers coupled to each other and controlled by an automation system controlled by a superior SCADA system.
IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1016/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1016/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Iryna Sukhodub; Inna Bilous; Valerii Ivanovych Deshko;Abstract The energy efficiency is one of the most important issues nowadays; the problem with the buildings heating is especially relevant for Ukraine. The aim of the paper is to develop a convenient tool building energy performance analysis based on regression model for internal air temperature prediction, depending on a number of internal and external influential factors. The external climatic factors, such as outside air temperature, wind speed and direction, solar heat gains depending on building fenestration surfaces orientation, are considered. Internal factors include heating load, number of floors, air exchange rate etc. In order to achieve the goal, a room dynamic simulation model is created in the EnergyPlus software. A number of simulations are carried out based on the created building energy model . The individual and aggregate selected factors influence on inside air temperature change is considered. The general structure of the multivariate nonlinear regression model for inside air temperature determination is analyzed and selected. Constant coefficients are obtained for each selected influencing factor, and verification of the received nonlinear regression model is performed based on simulation data using January climatic data from the IWEC file. The adequacy of the obtained regression model is estimated by the corrected determination coefficient (R 2 = 0.981) and Fisher's criterion (F = 1324.3), which indicates the high accuracy of the obtained multivariate nonlinear regression. The proposed approach for regression model creation can be used for other architectural and thermal properties of building envelope.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2018.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2018.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Allerton Press Authors: R. P. Peskov; Raisa Apostolova; Elena Shembel;Balastless thin-layer MnO2/Al electrodes without an electroconducting carbon additive in combination with multiwalled carbon nanotubes (MWCNT) MnO2/Al-MWCNT, as well as bulk-modified paste electrodes MnO2 (MWCNT) F4/18H12X9T stainless steel electrodes, have been studied in the redox reaction with lithium in a model accumulator on the basis of propylene carbonate (PC), dimetoxiethane (DME), and 1MLiClO4 and ethyl carbonate (EC), dimethylcarbonate (DMC), and 1M LiClO4 electrolytes. The window of the electrochemical stability of the anode oxidation on MnO2-Al/electrodes in the work range of the potentials for the electrolytes under study is 2.0–4.1 and 2.0–4.2 V, respectively. Because of the high contact resistance between the particles of the thin-layer β/γ-MnO2/Al electrode, its discharge capacity cannot exceed 110–120 mA h/g; however, it is stable through 180 cycles. The discharge capacity volume paste MnO2, F4/18H12X9T electrodes during the first cycle reaches 265–280 mA h/g and that of the reversible capacity ranges up to 185–250 mA h/g during the first 50 cycles. The role of the aluminum collector in the electrochemical transformation of MnO2 has been discussed in thin-layer MnO2/Al electrodes obtained by the mechanical rubbing of the active component into the aluminum matrix. The lithium chemical diffusion coefficient DLi established in the redox reaction of MnO2 with lithium has been estimated in thin-layer composite MnO2 MWCNT/Al electrodes at the current peak values (around 10−12 cm2/s) by slow cyclic voltammetry.
Surface Engineering ... arrow_drop_down Surface Engineering and Applied ElectrochemistryArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s1068375514020021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Surface Engineering ... arrow_drop_down Surface Engineering and Applied ElectrochemistryArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s1068375514020021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Andrii Krupko; Kateryna Synylo; Oleksandr Zaporozhets; Ruslan Makarenko;Abstract The growth of world aviation traffic leads to an increase of the impact on the environment that is now becoming one of the main factors determining the development of the aviation industry. Computational fluid dynamics (CFD) has become an attractive tool to predict pollutant concentration in the real environment. CFD software represents the most advanced mathematics that can be applied to simulation different physical process, including the transfer and dilution of fluid flow from aircraft, vehicle and other sources. This paper is an attempt to compare numerical simulation results of exhaust gases jet from aircraft near aerodrome surface by three CFD codes: Fluent 6.3, OpenFOAM and SolidWorks. The work is also focused on assessment of the aerodrome surface influence on jet’s parameters (height and longitudinal coordinate of buoyancy effect) and on providing of initial data for further dispersion modeling. The obtained results are also aimed to improve complex model PolEmiCa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Private Company Technology Center Gennadii Golub; Nataliya Tsyvenkova; Victor Golub; Viacheslav Chuba; Ivan Omarov; Anna Holubenko;The object of this study is the structural and technological parameters of the gas blower unit in the gasification chamber of a gas generator. The task to enable uniform distribution of air masses in the gas generator has been solved using the ANSYS Fluent software. The study is based on a simulation of the movement of air flows in the characteristic cross-sections of the gas generator, in particular the cross-section of the gasification chamber at the border of the oxidation and reduction zones. Seven structures of the gas blower unit were analyzed, the effectiveness of which was determined by the coefficient of variation. The most effective was the design whose value of the coefficient of variation is the smallest and equal to 93 %. At the same time, the total area of zones with no movement of air masses, that is, the absence of a gasification process, does not exceed 12 % of the total cross-sectional area of the gas generator. The speed of air masses at the boundary of the oxidation and reduction zones is aligned in the entire cross-section of the chamber and is V»4.5 m/s. The average value of the vertical component of the speed of air masses in the cross-section at the inlet to the recovery zone of the gasification chamber is V»0.6 m/s. Under such conditions, the production of synthesis gas of high calorific value with the absence of resins, acids, heavy hydrocarbons, and mechanical impurities is ensured. The correspondence of the simulation results with experimental data is confirmed by the coefficient of determination, which amounted to 0.87. The results reported here could be the basis of a modernized methodology for the study of aerodynamic, heat and mass exchange processes that occur during biomass gasification. This would make it possible to define the rational structural and technological parameters of gas generators and improve the efficiency of the gasification process as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2022.263436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2022.263436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object 2022 CroatiaPublisher:IEEE Authors: Kvaternik, Karlo; Pavković, Danijel; Kozhushko, Yuliia; Cipek Mihael;This paper presents the design of an extended Kalman filter (EKF) as a state-of-charge (SoC) estimator for a lithium–titanate (LTO) battery cell. The design is based on a Thevenin model of the equivalent battery electrical circuit with two parallel resistive-capacitive (RC) elements for the emulation of electrolyte polarization effects. The effectiveness of the proposed SoC estimator is verified through computer simulations on the comprehensive nonlinear battery simulation model featuring battery parameter vs. SoC variations, which is subject to highly dynamic loading regimes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/sst555...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2022Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/sst55530.2022.9954682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/sst555...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2022Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/sst55530.2022.9954682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Silesian University of Technology Authors: Oleksandr Mytrofanov; Arkadii Proskurin; Andrii Poznanskyi;doi: 10.21307/tp-2021-014
A schematic diagram of a transport hybrid power plant using a new design RPE-4.4/1.75 rotary piston air engine is proposed. Its external speed characteristic is determined, according to which the maximum engine power is 8.75 kW at 850 rpm and the maximum torque is 127.54 N∙m at 400 rpm. For various gears and speeds, all the components of the power balance were determined and the dynamic characteristic of the hybrid car was obtained when operated on an air engine. According to the dependences of the power balance, the total traction force from the rotary piston air engine on the driving wheels is 5 kN. The performance of acceleration of a hybrid car while working on an air engine is estimated, namely, the dependences of acceleration, time,and acceleration path are obtained. In urban traffic, the required time to accelerate the car to a speed of 60 km/h is 15.2 s and the path is 173 m. The possible drive range of the hybrid car on compressed air without additional recharging is analyzed. On one cylinder with compressed air with a volume of 100 liters, an initial pressure of 35 MPa, and a final pressure of 2 MPa, the hybrid car can travel about 26 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21307/tp-2021-014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21307/tp-2021-014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Mykola Zablodskiy; Volodymyr Gritsyuk; Volodymyr Kozyrskiy;The calculation of parameters of electromechanical converter of a multimodule structure with a common hollow massive rotor was submitted. The structure of high-performance electromechanical converter was shown, which includes not only the elements that perform the basic functions of energy conversion of one type into another and provide biomass being processed by fractional, formative and humidity parameters, but also implements a number of related physical and chemical effects to give new properties of biomass and increase the commercial value of the product. Since the material being processed is simultaneously a load-cooling material, the heat transfer and mechanical loading of the brake and motor module are interrelated. Results of industrial tests of the converter are presented. Comparison of experimental and calculated parameters and characteristics as a whole show good convergence of the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mees.2017.8248863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mees.2017.8248863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Authors: Andrii Radchenko; Mykola Radchenko; Andrii Konovalov; Anatolii Zubarev;An advanced scavenge air cooling system for reciprocating gas engines of integrated energy system for combined electricity, heat and refrigeration generation has been developed. New method of deep scavenge air cooling and stabilizing its temperature at increased ambient air temperatures and three-circuit scavenge air cooling system with absorption lithium-bromide chiller and wet-type cooling tower was proposed. Such cooling method does not require essential constructive changes in the existing scavenge air cooling system but only an addition heat exchanger for chilling scavenge air cooling water of scavenge air low-temperature intercooler closed contour by absorption chiller. A chilled water from absorption chiller is used as a coolant. To evaluate the effect of gas engine scavenge air deeper cooling compared with its typical radiator cooling, data on the dependence of fuel consumption and power output of gas engine on ambient air temperature at the inlet of the radiator are analized. The efficiency of engine scavenge air deep cooling at increased ambient air temperatures was estimated by reducing the gas fuel consumption compared with radiator cooling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20187003011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20187003011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Royal Society of Chemistry (RSC) Thomas Len; Viviana Bressi; Alina M. Balu; Tetiana Kulik; Olena Korchuganova; Borys Palianytsia; Claudia Espro; Rafael Luque;doi: 10.1039/d2gc02631g
handle: 11570/3248656
Thermokinetics of Biochar production.
Archivio Istituziona... arrow_drop_down Green ChemistryArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2gc02631g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Green ChemistryArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2gc02631g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing A. Kalwar; F. Kurdziel; Stanislaw Gumula; Uliana Marikutsa; D Korpyljov; Krzysztof Pytel;Abstract The publication presents the impact of using automatic control systems for operating gas engines aimed at a chilled water production. The purpose of the work is to analyse the possibilities of using automation systems to regulate gas flow. An important parameter of fuel supplied to gas engines used in the production of cold is its amount, which depends on the pressure. Unstable operation of gas distribution systems caused by an extensive network, many customers and operation of devices working with different loads causes improper, unpredictable operation of other devices working in the network. Uncertainty of fuel parameters results in unstable operation of gas engines, their load, and variable production of electricity, heat and cold. Ensuring proper and stable production is a key element of production processes. The concept of building a gas pressure regulation system based on its amount in the network will ensure the required, stable operation of gas engines and refrigeration units coupled with them, and thus provide a guarantee of production of generated media. The presented solution provides a solution to existing problems. The system is based on two dampers coupled to each other and controlled by an automation system controlled by a superior SCADA system.
IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1016/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1016/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Iryna Sukhodub; Inna Bilous; Valerii Ivanovych Deshko;Abstract The energy efficiency is one of the most important issues nowadays; the problem with the buildings heating is especially relevant for Ukraine. The aim of the paper is to develop a convenient tool building energy performance analysis based on regression model for internal air temperature prediction, depending on a number of internal and external influential factors. The external climatic factors, such as outside air temperature, wind speed and direction, solar heat gains depending on building fenestration surfaces orientation, are considered. Internal factors include heating load, number of floors, air exchange rate etc. In order to achieve the goal, a room dynamic simulation model is created in the EnergyPlus software. A number of simulations are carried out based on the created building energy model . The individual and aggregate selected factors influence on inside air temperature change is considered. The general structure of the multivariate nonlinear regression model for inside air temperature determination is analyzed and selected. Constant coefficients are obtained for each selected influencing factor, and verification of the received nonlinear regression model is performed based on simulation data using January climatic data from the IWEC file. The adequacy of the obtained regression model is estimated by the corrected determination coefficient (R 2 = 0.981) and Fisher's criterion (F = 1324.3), which indicates the high accuracy of the obtained multivariate nonlinear regression. The proposed approach for regression model creation can be used for other architectural and thermal properties of building envelope.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2018.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2018.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Allerton Press Authors: R. P. Peskov; Raisa Apostolova; Elena Shembel;Balastless thin-layer MnO2/Al electrodes without an electroconducting carbon additive in combination with multiwalled carbon nanotubes (MWCNT) MnO2/Al-MWCNT, as well as bulk-modified paste electrodes MnO2 (MWCNT) F4/18H12X9T stainless steel electrodes, have been studied in the redox reaction with lithium in a model accumulator on the basis of propylene carbonate (PC), dimetoxiethane (DME), and 1MLiClO4 and ethyl carbonate (EC), dimethylcarbonate (DMC), and 1M LiClO4 electrolytes. The window of the electrochemical stability of the anode oxidation on MnO2-Al/electrodes in the work range of the potentials for the electrolytes under study is 2.0–4.1 and 2.0–4.2 V, respectively. Because of the high contact resistance between the particles of the thin-layer β/γ-MnO2/Al electrode, its discharge capacity cannot exceed 110–120 mA h/g; however, it is stable through 180 cycles. The discharge capacity volume paste MnO2, F4/18H12X9T electrodes during the first cycle reaches 265–280 mA h/g and that of the reversible capacity ranges up to 185–250 mA h/g during the first 50 cycles. The role of the aluminum collector in the electrochemical transformation of MnO2 has been discussed in thin-layer MnO2/Al electrodes obtained by the mechanical rubbing of the active component into the aluminum matrix. The lithium chemical diffusion coefficient DLi established in the redox reaction of MnO2 with lithium has been estimated in thin-layer composite MnO2 MWCNT/Al electrodes at the current peak values (around 10−12 cm2/s) by slow cyclic voltammetry.
Surface Engineering ... arrow_drop_down Surface Engineering and Applied ElectrochemistryArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s1068375514020021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Surface Engineering ... arrow_drop_down Surface Engineering and Applied ElectrochemistryArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s1068375514020021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Andrii Krupko; Kateryna Synylo; Oleksandr Zaporozhets; Ruslan Makarenko;Abstract The growth of world aviation traffic leads to an increase of the impact on the environment that is now becoming one of the main factors determining the development of the aviation industry. Computational fluid dynamics (CFD) has become an attractive tool to predict pollutant concentration in the real environment. CFD software represents the most advanced mathematics that can be applied to simulation different physical process, including the transfer and dilution of fluid flow from aircraft, vehicle and other sources. This paper is an attempt to compare numerical simulation results of exhaust gases jet from aircraft near aerodrome surface by three CFD codes: Fluent 6.3, OpenFOAM and SolidWorks. The work is also focused on assessment of the aerodrome surface influence on jet’s parameters (height and longitudinal coordinate of buoyancy effect) and on providing of initial data for further dispersion modeling. The obtained results are also aimed to improve complex model PolEmiCa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Private Company Technology Center Gennadii Golub; Nataliya Tsyvenkova; Victor Golub; Viacheslav Chuba; Ivan Omarov; Anna Holubenko;The object of this study is the structural and technological parameters of the gas blower unit in the gasification chamber of a gas generator. The task to enable uniform distribution of air masses in the gas generator has been solved using the ANSYS Fluent software. The study is based on a simulation of the movement of air flows in the characteristic cross-sections of the gas generator, in particular the cross-section of the gasification chamber at the border of the oxidation and reduction zones. Seven structures of the gas blower unit were analyzed, the effectiveness of which was determined by the coefficient of variation. The most effective was the design whose value of the coefficient of variation is the smallest and equal to 93 %. At the same time, the total area of zones with no movement of air masses, that is, the absence of a gasification process, does not exceed 12 % of the total cross-sectional area of the gas generator. The speed of air masses at the boundary of the oxidation and reduction zones is aligned in the entire cross-section of the chamber and is V»4.5 m/s. The average value of the vertical component of the speed of air masses in the cross-section at the inlet to the recovery zone of the gasification chamber is V»0.6 m/s. Under such conditions, the production of synthesis gas of high calorific value with the absence of resins, acids, heavy hydrocarbons, and mechanical impurities is ensured. The correspondence of the simulation results with experimental data is confirmed by the coefficient of determination, which amounted to 0.87. The results reported here could be the basis of a modernized methodology for the study of aerodynamic, heat and mass exchange processes that occur during biomass gasification. This would make it possible to define the rational structural and technological parameters of gas generators and improve the efficiency of the gasification process as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2022.263436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2022.263436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu