- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- US
- DE
- AU
- Energies
- Energy Research
- 7. Clean energy
- 11. Sustainability
- US
- DE
- AU
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG doi: 10.3390/en12152983
Avoiding irreversible climate change as effectively as possible is one of the most pressing challenges of society. Carbon pricing that is uniformly valid on a global and cross-sectoral basis represents a cost-efficient policy tool to meet this challenge. Carbon pricing allows external costs to be allocated or internalized on a polluter-pays principle. It is shown that a global emissions cap-and-trade system is the most suitable market-based instrument for reducing global emissions levels, in line with the temperature goal set by the Paris Agreement. A proposal for its design is presented in this paper. This instrument encourages worldwide measures, with the lowest marginal abatement cost, according to a pre-defined reduction path. Thereby, it ensures compliance with a specified remaining carbon budget to meet a certain temperature limit in a cost-efficient manner. Possible reduction paths are presented in this paper. Weaknesses in the design of existing emissions trading systems (ETS), such as the EU ETS, are identified and avoided in the proposed instrument. The framework solves several problems of today’s climate change policies, like the free rider problem, carbon leakage, rebound effects or the green paradox. The introduction of a global uniform carbon pricing instrument and its concrete design should be the subject of policy, especially at the United Nations climate change conferences, as soon as possible in order to allow for rapid implementation. If a global ETS with a uniform carbon price could be introduced, additional governmental regulations with regard to carbon emissions would become obsolete.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2020Publisher:MDPI AG Authors:Vanesa Magar;
Vanesa Magar
Vanesa Magar in OpenAIREVictor M. Godínez;
Victor M. Godínez
Victor M. Godínez in OpenAIREMarkus S. Gross;
Markus S. Gross
Markus S. Gross in OpenAIREManuel López-Mariscal;
+3 AuthorsManuel López-Mariscal
Manuel López-Mariscal in OpenAIREVanesa Magar;
Vanesa Magar
Vanesa Magar in OpenAIREVictor M. Godínez;
Victor M. Godínez
Victor M. Godínez in OpenAIREMarkus S. Gross;
Markus S. Gross
Markus S. Gross in OpenAIREManuel López-Mariscal;
Anahí Bermúdez-Romero;Manuel López-Mariscal
Manuel López-Mariscal in OpenAIREJulio Candela;
Luis Zamudio;Julio Candela
Julio Candela in OpenAIREWe analyzed the peak spring tidal current speeds, annual mean tidal power densities ( T P D ) and annual energy production ( A E P ) obtained from experiment 06.1, referred as the “HYCOM model” throughout, of the three dimensional (3D), global model HYCOM in an area covering the Baja California Pacific and the Gulf of California. The HYCOM model is forced with astronomical tides and surface winds alone, and therefore is particularly suitable to assess the tidal current and wind-driven current contribution to in-stream energy resources. We find two areas within the Gulf of California, one in the Great Island Region and one in the Upper Gulf of California, where peak spring tidal flows reach speeds of 1.1 m per second. Second to fifth-generation tidal stream devices would be suitable for deployment in these two areas, which are very similar in terms of tidal in-stream energy resources. However, they are also very different in terms of sediment type and range in water depth, posing different challenges for in-stream technologies. The highest mean T P D value when excluding TPDs equal or less than 50 W m−2 (corresponding to the minimum velocity threshold for energy production) is of 172.8 W m−2, and is found near the town of San Felipe, at (lat lon) = (31.006–114.64); here energy would be produced during 39.00% of the time. Finally, wind-driven currents contribute very little to the mean T P D and the total A E P . Therefore, the device, the grid, and any energy storage plans need to take into account the periodic tidal current fluctuations, for optimal exploitation of the resources.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Amged Al Ezzi;
Amged Al Ezzi
Amged Al Ezzi in OpenAIREMiqdam T. Chaichan;
Hasan S. Majdi; Ali H. A. Al-Waeli; +5 AuthorsMiqdam T. Chaichan
Miqdam T. Chaichan in OpenAIREAmged Al Ezzi;
Amged Al Ezzi
Amged Al Ezzi in OpenAIREMiqdam T. Chaichan;
Hasan S. Majdi; Ali H. A. Al-Waeli;Miqdam T. Chaichan
Miqdam T. Chaichan in OpenAIREHussein A. Kazem;
Kamaruzzaman Sopian;Hussein A. Kazem
Hussein A. Kazem in OpenAIREMohammed A. Fayad;
Mohammed A. Fayad
Mohammed A. Fayad in OpenAIREHayder A. Dhahad;
Hayder A. Dhahad
Hayder A. Dhahad in OpenAIRETalal Yusaf;
Talal Yusaf
Talal Yusaf in OpenAIREdoi: 10.3390/en15113870
Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors:Chengguo Zhang;
Chengguo Zhang
Chengguo Zhang in OpenAIREFaham Tahmasebinia;
Faham Tahmasebinia
Faham Tahmasebinia in OpenAIREIsmet Canbulat;
Onur Vardar; +1 AuthorsIsmet Canbulat
Ismet Canbulat in OpenAIREChengguo Zhang;
Chengguo Zhang
Chengguo Zhang in OpenAIREFaham Tahmasebinia;
Faham Tahmasebinia
Faham Tahmasebinia in OpenAIREIsmet Canbulat;
Onur Vardar;Ismet Canbulat
Ismet Canbulat in OpenAIRESerkan Saydam;
Serkan Saydam
Serkan Saydam in OpenAIREdoi: 10.3390/en11020285
In underground mining, it is not currently feasible to forecast a coal burst incident. A coal burst usually includes suddenly abrupt energy release in line with the significant deformed shape in a coal mass as well as coal ejection. The major source of the released energy is the energy stored in the coal. The effect of geological characteristics in the coal on the possible released energy due to material and joint damping is classified as a current silent issue. Therefore, innovative research is needed to understand the influence of coal’s joint and cleat characters (directions and densities) on the possible energy release and/or dissipation. A simple and novel analytical solution is developed in this paper to calculate the amount of released energy due to varying joint density. A broad validation is conducted by comparing the outcomes of the developed analytical model with the results of a three-dimensional numerical simulation using the commercial discrete element package 3DEC. An appropriate agreement has been observed between the results from the numerical modelling and the suggested closed form solution. The paper derives a novel analytical solution to calculate the amount of released energy in coal with different joint densities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Netherlands, United KingdomPublisher:MDPI AG Authors:Rocio de la Torre;
Rocio de la Torre
Rocio de la Torre in OpenAIREBhakti S. Onggo;
Bhakti S. Onggo
Bhakti S. Onggo in OpenAIRECanan G. Corlu;
Canan G. Corlu
Canan G. Corlu in OpenAIREMaria Nogal;
+1 AuthorsMaria Nogal
Maria Nogal in OpenAIRERocio de la Torre;
Rocio de la Torre
Rocio de la Torre in OpenAIREBhakti S. Onggo;
Bhakti S. Onggo
Bhakti S. Onggo in OpenAIRECanan G. Corlu;
Canan G. Corlu
Canan G. Corlu in OpenAIREMaria Nogal;
Maria Nogal
Maria Nogal in OpenAIREAngel A. Juan;
Angel A. Juan
Angel A. Juan in OpenAIREdoi: 10.3390/en14041138
handle: 10609/147605
The prevailing need for a more sustainable management of natural resources depends not only on the decisions made by governments and the will of the population, but also on the knowledge of the role of energy in our society and the relevance of preserving natural resources. In this sense, critical work is being done to instill key concepts—such as the circular economy and sustainable energy—in higher education institutions. In this way, it is expected that future professionals and managers will be aware of the importance of energy optimization, and will learn a series of computational methods that can support the decision-making process. In the context of higher education, this paper reviews the main trends and challenges related to the concepts of circular economy and sustainable energy. Besides, we analyze the role of simulation and serious games as a learning tool for the aforementioned concepts. Finally, the paper provides insights and discusses open research opportunities regarding the use of these computational tools to incorporate circular economy concepts in higher education degrees. Our findings show that, while efforts are being made to include these concepts in current programs, there is still much work to be done, especially from the point of view of university management. In addition, the analysis of the teaching methodologies analyzed shows that, although their implementation has been successful in favoring the active learning of students, their use (especially that of serious games) is not yet widespread.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 89 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BYFull-Text: https://eprints.soton.ac.uk/447498/1/2021_Canan_Onggo_Energies_Simulation_Circular_Economy.pdfData sources: Bielefeld Academic Search Engine (BASE)Universitat Oberta de Catalunya (UOC), Barcelona: Institutional RepositoryArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041138Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:MDPI AG Authors:Michael Crilly;
Michael Crilly
Michael Crilly in OpenAIREChandra Mouli Vemury;
Richard Humphrey;Chandra Mouli Vemury
Chandra Mouli Vemury in OpenAIRESergio Rodriguez;
+4 AuthorsSergio Rodriguez
Sergio Rodriguez in OpenAIREMichael Crilly;
Michael Crilly
Michael Crilly in OpenAIREChandra Mouli Vemury;
Richard Humphrey;Chandra Mouli Vemury
Chandra Mouli Vemury in OpenAIRESergio Rodriguez;
Sergio Rodriguez
Sergio Rodriguez in OpenAIRETracey Crosbie;
Karen Johnson;Tracey Crosbie
Tracey Crosbie in OpenAIREAlexander Wilson;
Alexander Wilson
Alexander Wilson in OpenAIREOliver Heidrich;
Oliver Heidrich
Oliver Heidrich in OpenAIREdoi: 10.3390/en13225860
One of the repeating themes around the provision of the knowledge and skills needed for delivering sustainable communities is the idea of a “common language” for all built environment professionals. This suggestion has been repeated regularly with each new political and professional review within and between different sectors responsible for the delivery of sustainable communities. There have been multiple efforts to address academic limitations, industry fragmentation and promote more interdisciplinary working and sector collaboration. This research explored the role of skills for sustainable communities, particularly within the higher education (HE) sector, and the responses to support the development of a “common language of sustainability” that can be shared between different sectors, professional disciplines and stakeholders. As an interdisciplinary group of academics and practitioners working with the HE sector in the North East of England, we evaluate the progression of sector collaboration to develop a quintuple helix model for HE. We use this as a suitable framework for systematically “mapping” out the mixed sector (academic, public, business, community and environmental organisations) inputs and influences into a representative sample of HE degree modules that are delivered from foundation and undergraduate to postgraduate levels, including examples of part-time and distance-learning modules. We developed a cascade of models which demonstrate increasing levels of collaboration and their potential positive impact on the effectiveness of education on sustainable communities. The methodological assessments of modules were followed by semi-structured group reflective analysis undertaken through a series of online workshops (recorded during the Covid19 lockdown) to set out a collective understanding of the generic skills needed for the delivery of sustainable communities. These generic skills for sustainable communities are presented as a pedagogical progression model of teaching activities and learning outcomes applied to the levels within HE. We propose sustainability education principles and progressions with the hope that they can have an impact on the design or review of current degree modules and programmes. The paper informs future sustainability research to be grounded in holism and systems thinking; better understanding of values, ethics, influencing and political impact; and procedural authenticity.
CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors:Wuhui Chen;
Zaixing Teng;Wuhui Chen
Wuhui Chen in OpenAIREJunhua Zhao;
Junhua Zhao
Junhua Zhao in OpenAIREJing Qiu;
Jing Qiu
Jing Qiu in OpenAIREdoi: 10.3390/en11061486
The impact of Type 4 wind turbine generator (WTG)-based 10 million megawatt clusters (TMMC) on small-signal dynamics of power systems was investigated using the second-generation generic models (GM) of Western Electricity Coordinating Council (WECC). A WTG participation index (WTG PI) was defined to investigate the impact of Type 4 WTGs on the traditional interarea electromechanical modes. To identify the new electromechanical modes dominated by Type 4 WTGs, an identification factor (IF) was also defined using participation factors. Given the increasing penetration of Type 4 WTGs replacing synchronous generators, the changed law of damping and frequencies of the traditional interarea modes was also investigated using the WTG PI. One new type of electromechanical mode dominated by Type 4 WTGs was identified by using the defined IF. These new modes can be divided into two categories: strong-interaction modes and weak-interaction modes, depending on the number of participating WTGs. The strong-interaction modes dominated by Type 4 WTGs can result in widely spread power oscillations in power systems. The results of small-signal analysis were validated by time domain simulation and mode detection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Lixin Miao; Jingjing Jiang; Ji Li; Bo Shen; Peng Yang; Bin Ye;doi: 10.3390/en81112368
In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy). An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Publisher:MDPI AG Authors:Nsair, Abdullah;
Nsair, Abdullah
Nsair, Abdullah in OpenAIREÖnen Çınar, Senem;
Önen Çınar, Senem
Önen Çınar, Senem in OpenAIREAlassali, Ayah;
Alassali, Ayah
Alassali, Ayah in OpenAIREAbu Qdais, Hani;
+1 AuthorsAbu Qdais, Hani
Abu Qdais, Hani in OpenAIRENsair, Abdullah;
Nsair, Abdullah
Nsair, Abdullah in OpenAIREÖnen Çınar, Senem;
Önen Çınar, Senem
Önen Çınar, Senem in OpenAIREAlassali, Ayah;
Alassali, Ayah
Alassali, Ayah in OpenAIREAbu Qdais, Hani;
Kuchta, Kerstin;Abu Qdais, Hani
Abu Qdais, Hani in OpenAIREdoi: 10.3390/en13153761
handle: 11420/7145
The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Fernando Roberto dos Santos;
Fernando Roberto dos Santos
Fernando Roberto dos Santos in OpenAIREGiovana Katie Wiecheteck;
Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; +2 AuthorsGiovana Katie Wiecheteck
Giovana Katie Wiecheteck in OpenAIREFernando Roberto dos Santos;
Fernando Roberto dos Santos
Fernando Roberto dos Santos in OpenAIREGiovana Katie Wiecheteck;
Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza;Giovana Katie Wiecheteck
Giovana Katie Wiecheteck in OpenAIRETerrence Lynn Chambers;
Terrence Lynn Chambers
Terrence Lynn Chambers in OpenAIREAfef Fekih;
Afef Fekih
Afef Fekih in OpenAIREdoi: 10.3390/en15176274
Freshwater scarcity is a significant concern due to climate change in some regions of Brazil; likewise, evaporation rates have increased over the years. Floating photovoltaic systems can reduce water evaporation from reservoirs by suppressing the evaporating area on the water surface. This work evaluated the effects of floating photovoltaic systems on water evaporation rates in the Passaúna Reservoir, southeastern Brazil. Meteorological data such as temperature, humidity, wind speed, and solar radiation were used to estimate the rate of water evaporation using FAO Penman–Monteith, Linacre, Hargreaves–Samani, Rohwer, and Valiantzas methods. The methods were tested with the Kruskal–Wallis test, including measured evaporation from the nearest meteorological station to determine whether there were significant differences between the medians of the methods considering a 95% confidence level for hypothesis testing. All methods differed from the standard method recommended by the FAO Penman–Monteith. Simulations with more extensive coverage areas of the floating photovoltaic system were carried out to verify the relationship between the surface water coverage area and the evaporation reduction efficiency provided by the system and to obtain the avoided water evaporation volume. For the floating photovoltaic system with a coverage area of 1265.14 m2, an efficiency of 60.20% was obtained in reducing water evaporation; future expansions of the FPS were simulated with coverage areas corresponding to energy production capacities of 1 MWp, 2.5 MWp, and 5 MWp. The results indicated that for a floating photovoltaic system coverage area corresponding to 5 MWp of energy production capacity, the saved water volume would be enough to supply over 196 people for a year. More significant areas, such as covering up the entire available surface area of the Passaúna reservoir with a floating photovoltaic system, could save up to 2.69 hm3 of water volume annually, representing a more significant value for the public management of water resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu