- home
- Advanced Search
- Energy Research
- engineering and technology
- US
- AU
- PL
- Energy Research
- engineering and technology
- US
- AU
- PL
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Annalisa Manera; Mingjun Wang; Mingjun Wang; Suizheng Qiu; Guanghui Su;Abstract The improvement of thermodynamic efficiency of power plants is of great interest for the whole energy industry. The use of Kalina cycle has a great potential to improve the thermal efficiency of a nuclear power plant. This cycle uses a mixture of ammonia and water as working fluid. In this paper, we discuss the development of an Ammonia-Water mixture Property Code (AWProC). The estimation of the mixture properties are based on the Gibbs free energy functions. The code is verified and validated against experimental data available in the literature and REFPROP code. It is shown that AWProC can accurately estimate the thermodynamic properties of ammonia-water mixtures over a wide range of conditions, including high temperature and pressure regions. The code is then used to investigate the feasibility of applying the Kalina cycle to a typical Pressurizer Water Reactor (PWR) plant as an effective way to improve the plant efficiency. The fundamental of Basic-Kalina (B-K) cycle is described in detail firstly. Then, two modified configurations, Recuperation-Kalina (R-K) and Flash-Kalina (F-K) cycles respectively, are proposed for a typical 1000 MWe PWR. The simulation results indicate that the R-K type cycle can reach about 31.2% efficiency with simple equipment requirements, while the F-K type cycle can reach efficiencies up to about 34.8%, but at the expenses of a slightly more complex design. The present work demonstrates the applicability of the Kalina cycle as a way to improve the thermal efficiency of a nuclear power plant. This concept is meaningful for improving nuclear power plants economic and competitiveness.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Kimberly E. Baugh; Mikhail Zhizhin; Mikhail Zhizhin; Morgan Bazilian; Feng-Chi Hsu; Tilottama Ghosh; Christopher D. Elvidge;In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets. Keywords: VIIRS, Gas flaring, Nightfire, Nationally determined contributions, UN climate agreement
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Authors: Lund, P.; Byrne; J.;doi: 10.1002/wene.104
This article is categorized under: Energy Research & Innovation > Science and Materials Energy Research & Innovation > Economics and Policy Energy Research & Innovation > Systems and Infrastructure Energy Research & Innovation > Climate and Environment
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentArticleData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentArticleData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1994Publisher:Elsevier BV Authors: G.T. Johnson;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV Khayyam, Hamid; Naebe, Minoo; Bab-Hadiashar, Alireza; Jamshidi, Farshid; Li, Quanxiang; Atkiss, Stephen; Buckmaster, Derek; Fox, Bronwyn;handle: 1959.3/411069
Industrial producers face the task of optimizing production process in an attempt to achieve the desired quality such as mechanical properties with the lowest energy consumption. In industrial carbon fiber production, the fibers are processed in bundles containing (batches) several thousand filaments and consequently the energy optimization will be a stochastic process as it involves uncertainty, imprecision or randomness. This paper presents a stochastic optimization model to reduce energy consumption a given range of desired mechanical properties. Several processing condition sets are developed and for each set of conditions, 50 samples of fiber are analyzed for their tensile strength and modulus. The energy consumption during production of the samples is carefully monitored on the processing equipment. Then, five standard distribution functions are examined to determine those which can best describe the distribution of mechanical properties of filaments. To verify the distribution goodness of fit and correlation statistics, the Kolmogorov-Smirnov test is used. In order to estimate the selected distribution (Weibull) parameters, the maximum likelihood, least square and genetic algorithm methods are compared. An array of factors including the sample size, the confidence level, and relative error of estimated parameters are used for evaluating the tensile strength and modulus properties. The energy consumption and N2 gas cost are modeled by Convex Hull method. Finally, in order to optimize the carbon fiber production quality and its energy consumption and total cost, mixed integer linear programming is utilized. The results show that using the stochastic optimization models, we are able to predict the production quality in a given range and minimize the energy consumption of its industrial process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Alberto Abad; Pilar Gayán; Francisco García-Labiano; Maria Izquierdo; Juan Adánez; Luis F. de Diego; Raúl Pérez-Vega; Raúl Pérez-Vega;handle: 10261/190966
Chemical looping combustion allows the carbon dioxide capture by using an oxygen carrier, which transports the oxygen required for combustion from the air to the fuel. But complete combustion of a solid fuel is not achieved when low cost materials were used as oxygen carriers. Manganese‑iron mixed oxide doped with titanium has been identified as a promising oxygen carrier to improve combustion efficiency due to its oxygen uncoupling capability. The objective of this work was to assess the potential of this oxygen carrier when burning coal in a chemical looping unit. The coal combustion efficiency and carbon dioxide capture were evaluated as a function of the operating conditions both in the fuel and air reactor. Carbon dioxide capture was affected by the solids residence time in the fuel reactor. Coal combustion efficiency increased as the oxygen uncoupling capability was enhanced by using suitable operating conditions in the air reactor. Almost full coal combustion (99.4%) was achieved by setting an air reactor temperature of 880 °C, an air excess of 1.8, a fuel reactor temperature of 925 °C, and an oxygen carrier to fuel ratio >3. The oxygen carrier showed magnetic properties, allowing its re-use after being separated from ash. This work was partially supported by the project ENE2016-77982-R (AEI/FEDER, UE) and project ENE2017-89473R (AEI/FEDER, UE), and by the Consejo Superior de Investigaciones Científicas (CSIC project: 2017-80E035). 10 Figures, 4 Tables.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFuel Processing TechnologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 44visibility views 44 download downloads 126 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFuel Processing TechnologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1983Publisher:Elsevier BV Authors: Mark E. Sweat; John J. Carroll;Abstract A LOWTRAN 5 based flux model has been developed to calculate downwelling infrared irradiance from a clear night atmosphere onto a horizontal or tilted surface. This model is based on the transmittance/radiance code LOWTRAN 5 which can calculate the radiance from the atmosphere for user defined paths, atmospheric conditions and spectral intervals. Included in the model is the addition of a zeroth order scattering approximation to the LOWTRAN 5 code, methods of integrating LOWTRAN 5 calculated radiances over the sky hemisphere to obtain the downwelling flux, and a method for calculating the radiance from the atmosphere at wavenumbers outside the range of LOWTRAN 5. The accuracy of this model is verified by comparison of calculations based on radiosonde data with surface flux measurements taken concurrent with radiosonde ascent. Agreement is excellent for both horizontal and tilted surfaces with the deviation between measurements and calculations of the flux on a horizontal surface being less than 4 per cent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | PAIDEIAEC| PAIDEIAZanetti Giacomo; Carlotto A.; Lam Tran T. N.; Szczurek A.; Babiarczuk B.; Sayginer O.; Varas S.; Krzak J.; Bursi O.; Zonta D.; Baldi G.; Bonomo M.; Galliano S.; Barolo C.; Bazzanella N.; Pietralunga S. M.; Chiasera A.;handle: 20.500.14243/460711 , 11572/387209 , 11573/1730037 , 2318/1926611
We present the results of the spectral transmittance and reflectance of a SiO2/TiO2 1D photonic crystal deposited by Radio Frequency sputtering on a flexible polymeric substrate, which shows a blue-shift in its transmittance stopband proportional to the incidence angle when bent. An adjustable sample holder was designed to regulate the bending and keep the sample in a bent condition. Different angles of incidence were also achieved through variable angle reflectance, where an increase in incidence angle led to the blue-shift and narrowing of the transmittance stopband. We addressed the sample's resistance against bending wear and tear by comparing the transmittance spectra acquired for the flat sample before and after the measurements made in bent configurations. An important stability has been observed.
IRIS Cnr arrow_drop_down IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BY NC NDArchivio della ricerca- Università di Roma La SapienzaArticle . 2023Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BY NC NDArchivio della ricerca- Università di Roma La SapienzaArticle . 2023Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Lehtola, Timo; Zahedi, Ahmad;Abstract Solar energy and wind power supply are renewable, decentralised and intermittent electrical power supply methods that require energy storage. Integrating this renewable energy supply to the electrical power grid may reduce the demand for centralised production, making renewable energy systems more easily available to remote regions. Control systems optimise solar energy and wind power sources to supply renewable energy to the power grid. Vehicle to Grid (V2G) operations support intermittent production as battery storage. In V2G operations, electric power flows from the power grid to the battery storage and from the battery storage back to the power grid. The primary goal of this study is to improve the existing renewable energy supply to provide more reliable units in the power grid. We consider the V2G concept as an extension of the smart charging system allowing electric vehicles to be able to inject battery energy into the power grid, acting as distributed generators or energy storage systems. This review shows how parallel V2G storage and battery storage supports the power grid. Further, the review indicates that decentralised V2G battery storages will be included in future renewable energy systems.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.138 citations 138 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Preprint 2020Embargo end date: 01 Jan 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xinan Wang; Yishen Wang; Di Shi; Jianhui Wang; Zhiwei Wang;With the increasing complexity of modern power systems, conventional dynamic load modeling with ZIP and induction motors (ZIP + IM) is no longer adequate to address the current load characteristic transitions. In recent years, the WECC composite load model (WECC CLM) has shown to effectively capture the dynamic load responses over traditional load models in various stability studies and contingency analyses. However, a detailed WECC CLM model typically has a high degree of complexity, with over one hundred parameters, and no systematic approach to identifying and calibrating these parameters. Enabled by the wide deployment of PMUs and advanced deep learning algorithms, proposed here is a double deep Q-learning network (DDQN)-based, two-stage load modeling framework for the WECC CLM. This two-stage method decomposes the complicated WECC CLM for more efficient identification and does not require explicit model details. In the first stage, the DDQN agent determines an accurate load composition. In the second stage, the parameters of the WECC CLM are selected from a group of Monte-Carlo simulations. The set of selected load parameters is expected to best approximate the true transient responses. The proposed framework is verified using an IEEE 39-bus test system on commercial simulation platforms. To appear in IEEE Transactions on Smart Grid
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Annalisa Manera; Mingjun Wang; Mingjun Wang; Suizheng Qiu; Guanghui Su;Abstract The improvement of thermodynamic efficiency of power plants is of great interest for the whole energy industry. The use of Kalina cycle has a great potential to improve the thermal efficiency of a nuclear power plant. This cycle uses a mixture of ammonia and water as working fluid. In this paper, we discuss the development of an Ammonia-Water mixture Property Code (AWProC). The estimation of the mixture properties are based on the Gibbs free energy functions. The code is verified and validated against experimental data available in the literature and REFPROP code. It is shown that AWProC can accurately estimate the thermodynamic properties of ammonia-water mixtures over a wide range of conditions, including high temperature and pressure regions. The code is then used to investigate the feasibility of applying the Kalina cycle to a typical Pressurizer Water Reactor (PWR) plant as an effective way to improve the plant efficiency. The fundamental of Basic-Kalina (B-K) cycle is described in detail firstly. Then, two modified configurations, Recuperation-Kalina (R-K) and Flash-Kalina (F-K) cycles respectively, are proposed for a typical 1000 MWe PWR. The simulation results indicate that the R-K type cycle can reach about 31.2% efficiency with simple equipment requirements, while the F-K type cycle can reach efficiencies up to about 34.8%, but at the expenses of a slightly more complex design. The present work demonstrates the applicability of the Kalina cycle as a way to improve the thermal efficiency of a nuclear power plant. This concept is meaningful for improving nuclear power plants economic and competitiveness.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Kimberly E. Baugh; Mikhail Zhizhin; Mikhail Zhizhin; Morgan Bazilian; Feng-Chi Hsu; Tilottama Ghosh; Christopher D. Elvidge;In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets. Keywords: VIIRS, Gas flaring, Nightfire, Nationally determined contributions, UN climate agreement
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Authors: Lund, P.; Byrne; J.;doi: 10.1002/wene.104
This article is categorized under: Energy Research & Innovation > Science and Materials Energy Research & Innovation > Economics and Policy Energy Research & Innovation > Systems and Infrastructure Energy Research & Innovation > Climate and Environment
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentArticleData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentArticleData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1994Publisher:Elsevier BV Authors: G.T. Johnson;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV Khayyam, Hamid; Naebe, Minoo; Bab-Hadiashar, Alireza; Jamshidi, Farshid; Li, Quanxiang; Atkiss, Stephen; Buckmaster, Derek; Fox, Bronwyn;handle: 1959.3/411069
Industrial producers face the task of optimizing production process in an attempt to achieve the desired quality such as mechanical properties with the lowest energy consumption. In industrial carbon fiber production, the fibers are processed in bundles containing (batches) several thousand filaments and consequently the energy optimization will be a stochastic process as it involves uncertainty, imprecision or randomness. This paper presents a stochastic optimization model to reduce energy consumption a given range of desired mechanical properties. Several processing condition sets are developed and for each set of conditions, 50 samples of fiber are analyzed for their tensile strength and modulus. The energy consumption during production of the samples is carefully monitored on the processing equipment. Then, five standard distribution functions are examined to determine those which can best describe the distribution of mechanical properties of filaments. To verify the distribution goodness of fit and correlation statistics, the Kolmogorov-Smirnov test is used. In order to estimate the selected distribution (Weibull) parameters, the maximum likelihood, least square and genetic algorithm methods are compared. An array of factors including the sample size, the confidence level, and relative error of estimated parameters are used for evaluating the tensile strength and modulus properties. The energy consumption and N2 gas cost are modeled by Convex Hull method. Finally, in order to optimize the carbon fiber production quality and its energy consumption and total cost, mixed integer linear programming is utilized. The results show that using the stochastic optimization models, we are able to predict the production quality in a given range and minimize the energy consumption of its industrial process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Alberto Abad; Pilar Gayán; Francisco García-Labiano; Maria Izquierdo; Juan Adánez; Luis F. de Diego; Raúl Pérez-Vega; Raúl Pérez-Vega;handle: 10261/190966
Chemical looping combustion allows the carbon dioxide capture by using an oxygen carrier, which transports the oxygen required for combustion from the air to the fuel. But complete combustion of a solid fuel is not achieved when low cost materials were used as oxygen carriers. Manganese‑iron mixed oxide doped with titanium has been identified as a promising oxygen carrier to improve combustion efficiency due to its oxygen uncoupling capability. The objective of this work was to assess the potential of this oxygen carrier when burning coal in a chemical looping unit. The coal combustion efficiency and carbon dioxide capture were evaluated as a function of the operating conditions both in the fuel and air reactor. Carbon dioxide capture was affected by the solids residence time in the fuel reactor. Coal combustion efficiency increased as the oxygen uncoupling capability was enhanced by using suitable operating conditions in the air reactor. Almost full coal combustion (99.4%) was achieved by setting an air reactor temperature of 880 °C, an air excess of 1.8, a fuel reactor temperature of 925 °C, and an oxygen carrier to fuel ratio >3. The oxygen carrier showed magnetic properties, allowing its re-use after being separated from ash. This work was partially supported by the project ENE2016-77982-R (AEI/FEDER, UE) and project ENE2017-89473R (AEI/FEDER, UE), and by the Consejo Superior de Investigaciones Científicas (CSIC project: 2017-80E035). 10 Figures, 4 Tables.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFuel Processing TechnologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 44visibility views 44 download downloads 126 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFuel Processing TechnologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1983Publisher:Elsevier BV Authors: Mark E. Sweat; John J. Carroll;Abstract A LOWTRAN 5 based flux model has been developed to calculate downwelling infrared irradiance from a clear night atmosphere onto a horizontal or tilted surface. This model is based on the transmittance/radiance code LOWTRAN 5 which can calculate the radiance from the atmosphere for user defined paths, atmospheric conditions and spectral intervals. Included in the model is the addition of a zeroth order scattering approximation to the LOWTRAN 5 code, methods of integrating LOWTRAN 5 calculated radiances over the sky hemisphere to obtain the downwelling flux, and a method for calculating the radiance from the atmosphere at wavenumbers outside the range of LOWTRAN 5. The accuracy of this model is verified by comparison of calculations based on radiosonde data with surface flux measurements taken concurrent with radiosonde ascent. Agreement is excellent for both horizontal and tilted surfaces with the deviation between measurements and calculations of the flux on a horizontal surface being less than 4 per cent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | PAIDEIAEC| PAIDEIAZanetti Giacomo; Carlotto A.; Lam Tran T. N.; Szczurek A.; Babiarczuk B.; Sayginer O.; Varas S.; Krzak J.; Bursi O.; Zonta D.; Baldi G.; Bonomo M.; Galliano S.; Barolo C.; Bazzanella N.; Pietralunga S. M.; Chiasera A.;handle: 20.500.14243/460711 , 11572/387209 , 11573/1730037 , 2318/1926611
We present the results of the spectral transmittance and reflectance of a SiO2/TiO2 1D photonic crystal deposited by Radio Frequency sputtering on a flexible polymeric substrate, which shows a blue-shift in its transmittance stopband proportional to the incidence angle when bent. An adjustable sample holder was designed to regulate the bending and keep the sample in a bent condition. Different angles of incidence were also achieved through variable angle reflectance, where an increase in incidence angle led to the blue-shift and narrowing of the transmittance stopband. We addressed the sample's resistance against bending wear and tear by comparing the transmittance spectra acquired for the flat sample before and after the measurements made in bent configurations. An important stability has been observed.
IRIS Cnr arrow_drop_down IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BY NC NDArchivio della ricerca- Università di Roma La SapienzaArticle . 2023Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BY NC NDArchivio della ricerca- Università di Roma La SapienzaArticle . 2023Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Lehtola, Timo; Zahedi, Ahmad;Abstract Solar energy and wind power supply are renewable, decentralised and intermittent electrical power supply methods that require energy storage. Integrating this renewable energy supply to the electrical power grid may reduce the demand for centralised production, making renewable energy systems more easily available to remote regions. Control systems optimise solar energy and wind power sources to supply renewable energy to the power grid. Vehicle to Grid (V2G) operations support intermittent production as battery storage. In V2G operations, electric power flows from the power grid to the battery storage and from the battery storage back to the power grid. The primary goal of this study is to improve the existing renewable energy supply to provide more reliable units in the power grid. We consider the V2G concept as an extension of the smart charging system allowing electric vehicles to be able to inject battery energy into the power grid, acting as distributed generators or energy storage systems. This review shows how parallel V2G storage and battery storage supports the power grid. Further, the review indicates that decentralised V2G battery storages will be included in future renewable energy systems.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.138 citations 138 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Preprint 2020Embargo end date: 01 Jan 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xinan Wang; Yishen Wang; Di Shi; Jianhui Wang; Zhiwei Wang;With the increasing complexity of modern power systems, conventional dynamic load modeling with ZIP and induction motors (ZIP + IM) is no longer adequate to address the current load characteristic transitions. In recent years, the WECC composite load model (WECC CLM) has shown to effectively capture the dynamic load responses over traditional load models in various stability studies and contingency analyses. However, a detailed WECC CLM model typically has a high degree of complexity, with over one hundred parameters, and no systematic approach to identifying and calibrating these parameters. Enabled by the wide deployment of PMUs and advanced deep learning algorithms, proposed here is a double deep Q-learning network (DDQN)-based, two-stage load modeling framework for the WECC CLM. This two-stage method decomposes the complicated WECC CLM for more efficient identification and does not require explicit model details. In the first stage, the DDQN agent determines an accurate load composition. In the second stage, the parameters of the WECC CLM are selected from a group of Monte-Carlo simulations. The set of selected load parameters is expected to best approximate the true transient responses. The proposed framework is verified using an IEEE 39-bus test system on commercial simulation platforms. To appear in IEEE Transactions on Smart Grid
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
