- home
- Advanced Search
- Energy Research
- Open Source
- Embargo
- biological sciences
- US
- Energy Research
- Open Source
- Embargo
- biological sciences
- US
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Authors:Martha E. Crockatt;
Martha E. Crockatt
Martha E. Crockatt in OpenAIREWim Clymans;
Wim Clymans; David J. Palmer; +2 AuthorsWim Clymans
Wim Clymans in OpenAIREMartha E. Crockatt;
Martha E. Crockatt
Martha E. Crockatt in OpenAIREWim Clymans;
Wim Clymans; David J. Palmer;Wim Clymans
Wim Clymans in OpenAIREAlan G. Jones;
Alan G. Jones;Alan G. Jones
Alan G. Jones in OpenAIREMoisture availability is a strong determinant of decomposition rates in forests worldwide. Climate models suggest that many terrestrial ecosystems are at risk from future droughts, suggesting moisture limiting conditions will develop across a range of forests worldwide. The impacts of increasing drought conditions on forest carbon (C) fluxes due to shifts in organic matter decay rates may be poorly characterised due to limited experimental research. To appraise this question, we conducted a meta-analysis of forest drought experiment studies worldwide, examining spatial limits, knowledge gaps and potential biases. To identify limits to experimental knowledge, we projected the global distribution of forest drought experiments against spatially modelled estimates of (i) future precipitation change, (ii) ecosystem total above-ground C and (iii) soil C storage. Our assessment, involving 115 individual experimental study locations, found a mismatch between the distribution of forest drought experiments and regions with higher levels of future drought risk and C storage, such as Central America, Amazonia, the Atlantic Forest of Brazil, equatorial Africa and Indonesia. Decomposition rate responses in litter and soil were also relatively under-studied, with only 30 experiments specifically examining the potential experimental impacts of drought on C fluxes from soil or litter. We propose new approaches for engaging experimentally with forest drought research, utilising standardised protocols to appraise the impacts of drought on the C cycle, while targeting the most vulnerable and relevant forests.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-021-01645-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-021-01645-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Germany, United States, GermanyPublisher:Wiley Funded by:NSF | MSA: Dynamics of Chloroph...NSF| MSA: Dynamics of Chlorophyll Fluorescence and Its Relationship with Photosynthesis from Leaf to Continent: Theory Meets DataAuthors:Sun, Ying;
Wen, Jiaming;Sun, Ying
Sun, Ying in OpenAIREGu, Lianhong;
Joiner, Joanna; +12 AuthorsGu, Lianhong
Gu, Lianhong in OpenAIRESun, Ying;
Wen, Jiaming;Sun, Ying
Sun, Ying in OpenAIREGu, Lianhong;
Joiner, Joanna;Gu, Lianhong
Gu, Lianhong in OpenAIREChang, Christine Y.;
van der Tol, Christiaan;Chang, Christine Y.
Chang, Christine Y. in OpenAIREPorcar-Castell, Albert;
Porcar-Castell, Albert
Porcar-Castell, Albert in OpenAIREMagney, Troy;
Magney, Troy
Magney, Troy in OpenAIREWang, Lixin;
Hu, Leiqiu;Wang, Lixin
Wang, Lixin in OpenAIRERascher, Uwe;
Zarco-Tejada, Pablo;Rascher, Uwe
Rascher, Uwe in OpenAIREBarrett, Christopher B.;
Barrett, Christopher B.
Barrett, Christopher B. in OpenAIRELai, Jiameng;
Han, Jimei; Luo, Zhenqi;Lai, Jiameng
Lai, Jiameng in OpenAIREAbstractAlthough our observing capabilities of solar‐induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in‐situ SIF observing capability especially in “data desert” regions, improving cross‐instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.
Juelich Shared Elect... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16646&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16646&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) doi: 10.1093/icb/icae081
pmid: 38918057
Synopsis Since the late 1800s, anthropogenic activities such as fossil fuel consumption and deforestation have driven up the concentration of atmospheric CO2 around the globe by >45%. Such heightened concentrations of carbon dioxide in the atmosphere are a leading contributor to global climate change, with estimates of a 2–5° increase in global air temperature by the end of the century. While such climatic changes are mostly considered detrimental, a great deal of experimental work has shown that increased atmospheric CO2 will actually increase growth in various plants, which may lead to increased biomass for potential harvesting or CO2 sequestration. However, it is not clear whether this increase in growth or biomass will be beneficial to the plants, as such increases may lead to weaker plant materials. In this review, I examine our current understanding of how elevated atmospheric CO2 caused by anthropogenic effects may influence plant material properties, focusing on potential effects on wood. For the first part of the review, I explore how aspects of wood anatomy and structure influence resistance to bending and breakage. This information is then used to review how changes in CO2 levels may later these aspects of wood anatomy and structure in ways that have mechanical consequences. The major pattern that emerges is that the consequences of elevated CO2 on wood properties are highly dependent on species and environment, with different tree species showing contradictory responses to atmospheric changes. In the end, I describe a couple avenues for future research into better understanding the influence of atmospheric CO2 levels on plant biomaterial mechanics.
Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Funded by:NSF | NSF PRFB FY 2023: Conside..., NSF | BII: Uncovering mechanism...NSF| NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians ,NSF| BII: Uncovering mechanisms of amphibian resilience to global change from molecules to landscapesAuthors:Jennifer M, Cocciardi;
Jennifer M, Cocciardi
Jennifer M, Cocciardi in OpenAIREMichel E B, Ohmer;
Michel E B, Ohmer
Michel E B, Ohmer in OpenAIREdoi: 10.1093/icb/icae132
pmid: 39138058
SynopsisIntraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Authors: Madeline R Lueck; Michelle M Moyer;Tanya E Cheeke;
Tanya E Cheeke
Tanya E Cheeke in OpenAIREpmid: 38936822
Abstract Aims Incorporating biofertilizers, such as arbuscular mycorrhizal fungal (AM) fungal inoculants, into vineyard management practices may enhance vine growth and reduce environmental impact. Here, we evaluate the effects of commercially available and local AM fungal inoculants on the growth, root colonization, and nutrient uptake of wine grapes (Vitis vinifera) when planted in a field soil substrate. Methods and results In a greenhouse experiment, young wine grapes were planted in a field soil substrate and inoculated with one of three commercially available mycorrhizal inoculant products, or one of two locally collected whole soil inoculants. After 4 months of growth, inoculated vines showed no differences in plant biomass, colonization of roots by AM fungi, or foliar macronutrient concentrations compared to uninoculated field soil substrate. However, vines grown with local inoculants had greater shoot biomass than vines grown with mycorrhizal inoculant products. Conclusions Although effects from inoculations with AM fungi varied by inoculant type and source, inoculations may not improve young vine performance in field soils with a resident microbial community.
Journal of Applied M... arrow_drop_down Journal of Applied MicrobiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jambio/lxae161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Applied M... arrow_drop_down Journal of Applied MicrobiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jambio/lxae161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 21 Feb 2025 United States, United States, SpainPublisher:Elsevier BV Authors:Fernández Guisuraga, José Manuel;
Fernández Guisuraga, José Manuel
Fernández Guisuraga, José Manuel in OpenAIRECalvo Galván, María Leonor;
Fernandes, Paulo Alexandre Martins, 1966-; Hulet, April; +10 AuthorsCalvo Galván, María Leonor
Calvo Galván, María Leonor in OpenAIREFernández Guisuraga, José Manuel;
Fernández Guisuraga, José Manuel
Fernández Guisuraga, José Manuel in OpenAIRECalvo Galván, María Leonor;
Fernandes, Paulo Alexandre Martins, 1966-; Hulet, April; Perryman, Barry; Schultz, Brad; Jensen, K. Scott; Enterkine, Josh; Boyd, Chad S.; Davies, Kirk W.; Johnson, Dustin D.; Wollstein, Katherine;Calvo Galván, María Leonor
Calvo Galván, María Leonor in OpenAIREPrice, William J.;
Arispe, Sergio A.;Price, William J.
Price, William J. in OpenAIREpmid: 36462652
Exotic annual grasses invasion across northern Great Basin rangelands has promoted a grass-fire cycle that threatens the sagebrush (Artemisia spp.) steppe ecosystem. In this sense, high accumulation rates and persistence of litter from annual species largely increase the amount and continuity of fine fuels. Here, we highlight the potential use and transferability of remote sensing-derived products to estimate litter biomass on sagebrush rangelands in southeastern Oregon, and link fire regime attributes (fire-free period) with litter biomass spatial patterns at the landscape scale. Every June, from 2018 to 2021, we measured litter biomass in 24 field plots (60 m × 60 m). Two remote sensing-derived datasets were used to predict litter biomass measured in the field plots. The first dataset used was the 30-m annual net primary production (NPP) product partitioned into plant functional traits (annual grass, perennial grass, shrub, and tree) from the Rangeland Analysis Platform (RAP). The second dataset included topographic variables (heat load index -HLI- and site exposure index -SEI-) computed from the USGS 30-m National Elevation Dataset. Through a frequentist model averaging approach (FMA), we determined that the NPP of annual and perennial grasses, as well as HLI and SEI, were important predictors of field-measured litter biomass in 2018, with the model featuring a high overall fit (R2 = 0.61). Model transferability based on extrapolating the FMA predictive relationships from 2018 to the following years provided similar overall fits (R2 ≈ 0.5). The fire-free period had a significant effect on the litter biomass accumulation on rangelands within the study site, with greater litter biomass in areas where the fire-free period was <10 years. Our findings suggest that the proposed remote sensing-derived products could be a key instrument to equip rangeland managers with additional information towards fuel management, fire management, and restoration efforts.
BULERIA arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefScholarWorks Boise State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.160634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert BULERIA arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefScholarWorks Boise State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.160634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Authors:Patrick B Wright;
Patrick B Wright
Patrick B Wright in OpenAIREJanet C Steven;
Janet C Steven
Janet C Steven in OpenAIREdoi: 10.1093/icb/icae119
pmid: 39038995
Synopsis Many plant species are known to take up metals from the soil and accumulate them to potentially toxic levels. This may provide tolerance to soils with high metal content or a defensive mechanism against herbivores and pathogens. Accumulators, plants that uptake and store elevated concentrations of metals, can be used in phytoremediation as a means to remove metals from contaminated soils. In this study, the native weed Conyza canadensis was grown in soils contaminated with elevated levels of lead (Pb), barium (Ba), zinc (Zn), copper (Cu), or chromium (Cr). All metals, except for Cr, were accumulated by the plants. Zinc and Cu, both essential elements, accumulated to the highest levels, while Pb and Ba were present at lower levels. All treatments except Cr showed accelerating rates of accumulation over the eight-week experiment. Barium, Cu, and Cr reduced aboveground biomass of the plants, indicating toxicity or a cost to metal accumulation. Lead and Zn promoted early flowering, while plants accumulating Ba, Cr, and Cu flowered in lower numbers. Overall, C. canadensis has promise in the phytoremediation of Pb, Cu, and Zn.
Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Germany, Germany, United StatesPublisher:Wiley Funded by:NSF | MSA: Dynamics of Chloroph...NSF| MSA: Dynamics of Chlorophyll Fluorescence and Its Relationship with Photosynthesis from Leaf to Continent: Theory Meets DataAuthors:Sun, Ying;
Sun, Ying
Sun, Ying in OpenAIREGu, Lianhong;
Wen, Jiaming; van der Tol, Christiaan; +12 AuthorsGu, Lianhong
Gu, Lianhong in OpenAIRESun, Ying;
Sun, Ying
Sun, Ying in OpenAIREGu, Lianhong;
Wen, Jiaming; van der Tol, Christiaan;Gu, Lianhong
Gu, Lianhong in OpenAIREPorcar-Castell, Albert;
Joiner, Joanna;Porcar-Castell, Albert
Porcar-Castell, Albert in OpenAIREChang, Christine Y.;
Chang, Christine Y.
Chang, Christine Y. in OpenAIREMagney, Troy;
Magney, Troy
Magney, Troy in OpenAIREWang, Lixin;
Hu, Leiqiu;Wang, Lixin
Wang, Lixin in OpenAIRERascher, Uwe;
Zarco-Tejada, Pablo;Rascher, Uwe
Rascher, Uwe in OpenAIREBarrett, Christopher B.;
Barrett, Christopher B.
Barrett, Christopher B. in OpenAIRELai, Jiameng;
Han, Jimei; Luo, Zhenqi;Lai, Jiameng
Lai, Jiameng in OpenAIREAbstractSolar‐induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three‐dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi‐sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5–10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question—How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real‐world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.
Juelich Shared Elect... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu