- home
- Advanced Search
- Energy Research
- US
- ES
- arXiv.org e-Print Archive
- Energy Research
- US
- ES
- arXiv.org e-Print Archive
description Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2018Embargo end date: 01 Jan 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hao Wang; Jianwei Huang;arXiv: 1609.07576
In this paper, we study the interactions among interconnected autonomous microgrids, and propose a joint energy trading and scheduling strategy. Each interconnected microgrid not only schedules its local power supply and demand, but also trades energy with other microgrids in a distribution network. Specifically, microgrids with excessive renewable generations can trade with other microgrids in deficit of power supplies for mutual benefits. Since interconnected microgrids operate autonomously, they aim to optimize their own performance and expect to gain benefits through energy trading. We design an incentive mechanism using Nash bargaining theory to encourage proactive energy trading and fair benefit sharing. We solve the bargaining problem by decomposing it into two sequential problems on social cost minimization and trading benefit sharing, respectively. For practical implementation, we propose a decentralized solution method with minimum information exchange overhead. Numerical studies based on realistic data demonstrate that the total cost of the interconnected-microgrids operation can be reduced by up to 13.2% through energy trading, and an individual participating microgrid can achieve up to 29.4% reduction in its cost through energy trading. To appear in IEEE Transactions on Smart Grid
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2614988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 330 citations 330 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2614988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2016Embargo end date: 01 Jan 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | CPS: Medium: Collaborativ..., NSERCNSF| CPS: Medium: Collaborative Research: The Cyber-Physical Challenges of Transient Stability and Security in Power Grids ,NSERCAuthors: John W. Simpson-Porco; Francesco Bullo;arXiv: 1602.05632
The assessment of voltage stability margins is a promising direction for wide-area monitoring systems. Accurate monitoring architectures for long-term voltage instability are typically centralized and lack scalability, while completely decentralized approaches relying on local measurements tend towards inaccuracy. Here we present distributed linear algorithms for the online computation of voltage collapse sensitivity indices. The computations are collectively performed by processors embedded at each bus in the smart grid, using synchronized phasor measurements and communication of voltage phasors between neighboring buses. Our algorithms provably converge to the proper index values, as would be calculated using centralized information, but but do not require any central decision maker for coordination. Modifications of the algorithms to account for generator reactive power limits are discussed. We illustrate the effectiveness of our designs with a case study of the New England 39 bus system. 10 pages, submitted for publication
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2533319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2533319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2022Embargo end date: 01 Jan 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Geunseob Oh; David J. Leblanc; Huei Peng;arXiv: 1905.02081
We present Vehicle Energy Dataset (VED), a novel large-scale dataset of fuel and energy data collected from 383 personal cars in Ann Arbor, Michigan, USA. This open dataset captures GPS trajectories of vehicles along with their time-series data of fuel, energy, speed, and auxiliary power usage. A diverse fleet consisting of 264 gasoline vehicles, 92 HEVs, and 27 PHEV/EVs drove in real-world from Nov, 2017 to Nov, 2018, where the data were collected through onboard OBD-II loggers. Driving scenarios range from highways to traffic-dense downtown area in various driving conditions and seasons. In total, VED accumulates approximately 374,000 miles. We discuss participant privacy protection and develop a method to de-identify personally identifiable information while preserving the quality of the data. After the de-identification, we conducted case studies on the dataset to investigate the impacts of factors known to affect fuel economy and identify energy-saving opportunities that hybrid-electric vehicles and eco-driving techniques can provide. The case studies are supplemented with a number of examples to demonstrate how VED can be utilized for vehicle energy and behavior studies. Potential research opportunities include data-driven vehicle energy consumption modeling, driver behavior modeling, machine and deep learning, calibration of traffic simulators, optimal route choice modeling, prediction of human driver behaviors, and decision making of self-driving cars. We believe that VED can be an instrumental asset to the development of future automotive technologies. The dataset can be accessed at https://github.com/gsoh/VED. 11 pages, 15 figures
IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2020.3035596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2020.3035596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023Publisher:Elsevier BV Authors: Maomao Hu; Ram Rajagopal; Jacques A. de Chalendar;arXiv: 2304.13175
Building energy flexibility has been increasingly demonstrated as a cost-effective solution to respond to the needs of energy networks, including electric grids and district cooling and heating systems, improving the integration of intermittent renewable energy sources. Adjusting zonal temperature set-points is one of the most promising measures to unlock the energy flexibility potential of central air conditioning systems in complex commercial buildings. However, most existing studies focused on quantifying the energy flexibility on the building level since only building-level energy consumption is normally metered in commercial buildings. This study aims to investigate the impacts of temperature set-point adjustment strategies on zone-level thermal and energy performance by developing a non-intrusive data-driven load disaggregation method (i.e., a virtual zonal power meter). Three university buildings in Northern California were selected to test the proposed load disaggregation method. We found that heterogeneities of energy use and energy flexibility existed across not only buildings but also air handling units (AHUs) and zones. Moreover, a small number of zones accounted for a large amount of energy use and energy flexibility; and the most energy-intensive zones are not necessarily the most energy-flexible zones. For the three tested buildings, the top 30% most energy-intensive zones accounted for around 60% of the total energy use; and the top 30% most energy-flexible zones provided around 80% of the total energy flexibility. The proposed method enables the electric grid or district energy system operators to regard the controlled energy-flexible entities as a fleet of AHUs or zones instead of a fleet of buildings and helps unlock the possibility for targeted demand flexibility strategies that balance zone-by-zone energy reduction with zone-by-zone costs to occupants. 33 pages, 18 figures
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2017Embargo end date: 01 Jan 2017Publisher:IEEE Authors: Lingxue Zhu; Nikolay Laptev;arXiv: 1709.01907
Reliable uncertainty estimation for time series prediction is critical in many fields, including physics, biology, and manufacturing. At Uber, probabilistic time series forecasting is used for robust prediction of number of trips during special events, driver incentive allocation, as well as real-time anomaly detection across millions of metrics. Classical time series models are often used in conjunction with a probabilistic formulation for uncertainty estimation. However, such models are hard to tune, scale, and add exogenous variables to. Motivated by the recent resurgence of Long Short Term Memory networks, we propose a novel end-to-end Bayesian deep model that provides time series prediction along with uncertainty estimation. We provide detailed experiments of the proposed solution on completed trips data, and successfully apply it to large-scale time series anomaly detection at Uber. To appear in DSBDA-2017 @ ICDM'17
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icdmw.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 191 citations 191 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icdmw.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yujia Li; Shunbo Lei; Wei Sun; Chenxi Hu; Yunhe Hou;arXiv: 2207.00741
When performing the resilience enhancement for distribution networks, there are two obstacles to reliably model the uncertain contingencies: 1) decision-dependent uncertainty (DDU) due to various line hardening decisions, and 2) distributional ambiguity due to limited outage information during extreme weather events (EWEs). To address these two challenges, this paper develops scenario-wise decision-dependent ambiguity sets (SWDD-ASs), where the DDU and distributional ambiguity inherent in EWE-induced contingencies are simultaneously captured for each possible EWE scenario. Then, a two-stage trilevel decision-dependent distributionally robust resilient enhancement (DD-DRRE) model is formulated, whose outputs include the optimal line hardening, distributed generation (DG) allocation, and proactive network reconfiguration strategy under the worst-case distributions in SWDD-ASs. Subsequently, the DD-DRRE model is equivalently recast to a mixed-integer linear programming (MILP)-based master problem and multiple scenario-wise subproblems, facilitating the adoption of a customized column-and-constraint generation (C&CG) algorithm. Finally, case studies demonstrate a remarkable improvement in the out-of-sample performance of our model, compared to its prevailing stochastic and robust counterparts. Moreover, the potential values of incorporating the ambiguity and distributional information are quantitatively estimated, providing a useful reference for planners with different budgets and risk-aversion levels.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3310979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3310979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2020Embargo end date: 01 Jan 2019 United StatesPublisher:IEEE Funded by:NSF | Risk Assessment of Power ...NSF| Risk Assessment of Power Systems to Extreme Events using Polynomial-Chaos-based MethodsHu, Zhixiong; Xu, Yijun; Korkali, Mert; Chen, Xiao; Mili, Lamine M.; Tong, Charles H.;The increasing penetration of renewable energy resources in power systems, represented as random processes, converts the traditional deterministic economic dispatch problem into a stochastic one. To solve this stochastic economic dispatch, the conventional Monte Carlo method is prohibitively time consuming for medium- and large-scale power systems. To overcome this problem, we propose in this paper a novel Gaussian-process-emulator-based approach to quantify the uncertainty in the stochastic economic dispatch considering wind power penetration. Based on the dimension-reduction results obtained by the Karhunen-Lo��ve expansion, a Gaussian-process emulator is constructed. This surrogate allows us to evaluate the economic dispatch solver at sampled values with a negligible computational cost while maintaining a desirable accuracy. Simulation results conducted on the IEEE 118-bus system reveal that the proposed method has an excellent performance as compared to the traditional Monte Carlo method.
http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1109/isgt45...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt45199.2020.9087714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1109/isgt45...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt45199.2020.9087714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 FrancePublisher:IOP Publishing Funded by:ANR | MMUniverse, SNSF | Testing General Relativit...ANR| MMUniverse ,SNSF| Testing General Relativity with Cosmological ObservationsAuthors: He, Yutong; Roper Pol, Alberto; Brandenburg, Axel;arXiv: 2212.06082
AbstractWe study the propagation of cosmological gravitational wave (GW) backgrounds from the early radiation era until the present day in modified theories of gravity. Comparing to general relativity (GR), we study the effects that modified gravity parameters, such as the GW friction αMand the tensor speed excessαT, have on the present-day GW spectrum. We use both the WKB estimate, which provides an analytical description but fails at superhorizon scales, and numerical simulations that allow us to go beyond the WKB approximation. We show that a constantαTmakes relatively insignificant changes to the GR solution, especially taking into account the constraints on its value from GW observations by the LIGO-Virgo collaboration, whileαMcan introduce modifications to the spectral slopes of the GW energy spectrum in the low-frequency regime depending on the considered time evolution ofαM. The latter effect is additional to the damping or growth occurring equally at all scales that can be predicted by the WKB approximation. In light of the recent observations by pulsar timing array (PTA) collaborations, and the potential observations by future detectors such as SKA, LISA, DECIGO, BBO, or ET, we show that, in most of the cases, constraints cannot be placed on the effects ofαMand the initial GW energy density ℰ*GWseparately, but only on the combined effects of the two, unless the signal is observed at different frequency ranges. In particular, we provide some constraints on the combined effects from the reported PTA observations.
Journal of Cosmology... arrow_drop_down Journal of Cosmology and Astroparticle PhysicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1475-7516/2023/06/025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Cosmology... arrow_drop_down Journal of Cosmology and Astroparticle PhysicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1475-7516/2023/06/025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Journal 2022Embargo end date: 01 Jan 2020 United StatesPublisher:IEEE Authors: Samuel Chevalier; Federico Martin Ibanez; Kathleen Cavanagh; Konstantin Turitsyn; +2 AuthorsSamuel Chevalier; Federico Martin Ibanez; Kathleen Cavanagh; Konstantin Turitsyn; Luca Daniel; Petr Vorobev;arXiv: 2011.06707
handle: 1721.1/143111
DC microgrids are prone to small-signal instabilities due to the presence of tightly regulated loads. This paper develops a decentralized stability certificate which is capable of certifying the small-signal stability of an islanded DC network containing such loads. Utilizing a novel homotopy approach, the proposed standards ensure that no system eigenmodes are able to cross into the unstable right half plane for a continuous range of controller gain levels. The resulting "standards" can be applied to variety of grid components which meet the specified, but non-unique, criteria. These standards thus take a step towards offering plug-and-play operability of DC microgrids. The proposed theorems are explicitly illustrated and numerically validated on multiple DC microgrid test-cases containing both buck and boost converter dynamics.
IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018Publisher:Elsevier BV Funded by:FCT | LA 2FCT| LA 2Authors: Guojun Hu; Tomasz Kozlowski;arXiv: 1805.01451
Verification, validation and uncertainty quantification (VVUQ) have become a common practice in thermal-hydraulics analysis. An important step in the uncertainty analysis is the sensitivity analysis of various uncertain input parameters. The common approach for computing the sensitivities, e.g. variance-based and regression-based methods, requires solving the governing equation multiple times, which is expensive in terms of computational cost. An alternative approach to compute the sensitivities is the adjoint method. The cost of solving an adjoint equation is comparable to the cost of solving the governing equation. Once the adjoint solution is available, the sensitivities to any number of parameters can be obtained with little cost. However, successful application of adjoint sensitivity analysis to two-phase flow simulations is rare. In this work, an adjoint sensitivity analysis framework is developed based on the discrete adjoint method and a new implicit forward solver. The framework is tested with the faucet flow problem and the BFBT benchmark. Adjoint sensitivities are shown to match analytical sensitivities very well in the faucet flow problem. The adjoint method is used to propagate uncertainty in input parameters to the void fraction in the BFBT benchmark test. The uncertainty propagation with the adjoint method is verified with the Monte Carlo method and is shown to be efficient.
Annals of Nuclear En... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Annals of Nuclear En... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2018Embargo end date: 01 Jan 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hao Wang; Jianwei Huang;arXiv: 1609.07576
In this paper, we study the interactions among interconnected autonomous microgrids, and propose a joint energy trading and scheduling strategy. Each interconnected microgrid not only schedules its local power supply and demand, but also trades energy with other microgrids in a distribution network. Specifically, microgrids with excessive renewable generations can trade with other microgrids in deficit of power supplies for mutual benefits. Since interconnected microgrids operate autonomously, they aim to optimize their own performance and expect to gain benefits through energy trading. We design an incentive mechanism using Nash bargaining theory to encourage proactive energy trading and fair benefit sharing. We solve the bargaining problem by decomposing it into two sequential problems on social cost minimization and trading benefit sharing, respectively. For practical implementation, we propose a decentralized solution method with minimum information exchange overhead. Numerical studies based on realistic data demonstrate that the total cost of the interconnected-microgrids operation can be reduced by up to 13.2% through energy trading, and an individual participating microgrid can achieve up to 29.4% reduction in its cost through energy trading. To appear in IEEE Transactions on Smart Grid
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2614988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 330 citations 330 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2614988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2016Embargo end date: 01 Jan 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | CPS: Medium: Collaborativ..., NSERCNSF| CPS: Medium: Collaborative Research: The Cyber-Physical Challenges of Transient Stability and Security in Power Grids ,NSERCAuthors: John W. Simpson-Porco; Francesco Bullo;arXiv: 1602.05632
The assessment of voltage stability margins is a promising direction for wide-area monitoring systems. Accurate monitoring architectures for long-term voltage instability are typically centralized and lack scalability, while completely decentralized approaches relying on local measurements tend towards inaccuracy. Here we present distributed linear algorithms for the online computation of voltage collapse sensitivity indices. The computations are collectively performed by processors embedded at each bus in the smart grid, using synchronized phasor measurements and communication of voltage phasors between neighboring buses. Our algorithms provably converge to the proper index values, as would be calculated using centralized information, but but do not require any central decision maker for coordination. Modifications of the algorithms to account for generator reactive power limits are discussed. We illustrate the effectiveness of our designs with a case study of the New England 39 bus system. 10 pages, submitted for publication
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2533319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2533319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2022Embargo end date: 01 Jan 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Geunseob Oh; David J. Leblanc; Huei Peng;arXiv: 1905.02081
We present Vehicle Energy Dataset (VED), a novel large-scale dataset of fuel and energy data collected from 383 personal cars in Ann Arbor, Michigan, USA. This open dataset captures GPS trajectories of vehicles along with their time-series data of fuel, energy, speed, and auxiliary power usage. A diverse fleet consisting of 264 gasoline vehicles, 92 HEVs, and 27 PHEV/EVs drove in real-world from Nov, 2017 to Nov, 2018, where the data were collected through onboard OBD-II loggers. Driving scenarios range from highways to traffic-dense downtown area in various driving conditions and seasons. In total, VED accumulates approximately 374,000 miles. We discuss participant privacy protection and develop a method to de-identify personally identifiable information while preserving the quality of the data. After the de-identification, we conducted case studies on the dataset to investigate the impacts of factors known to affect fuel economy and identify energy-saving opportunities that hybrid-electric vehicles and eco-driving techniques can provide. The case studies are supplemented with a number of examples to demonstrate how VED can be utilized for vehicle energy and behavior studies. Potential research opportunities include data-driven vehicle energy consumption modeling, driver behavior modeling, machine and deep learning, calibration of traffic simulators, optimal route choice modeling, prediction of human driver behaviors, and decision making of self-driving cars. We believe that VED can be an instrumental asset to the development of future automotive technologies. The dataset can be accessed at https://github.com/gsoh/VED. 11 pages, 15 figures
IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2020.3035596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2020.3035596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023Publisher:Elsevier BV Authors: Maomao Hu; Ram Rajagopal; Jacques A. de Chalendar;arXiv: 2304.13175
Building energy flexibility has been increasingly demonstrated as a cost-effective solution to respond to the needs of energy networks, including electric grids and district cooling and heating systems, improving the integration of intermittent renewable energy sources. Adjusting zonal temperature set-points is one of the most promising measures to unlock the energy flexibility potential of central air conditioning systems in complex commercial buildings. However, most existing studies focused on quantifying the energy flexibility on the building level since only building-level energy consumption is normally metered in commercial buildings. This study aims to investigate the impacts of temperature set-point adjustment strategies on zone-level thermal and energy performance by developing a non-intrusive data-driven load disaggregation method (i.e., a virtual zonal power meter). Three university buildings in Northern California were selected to test the proposed load disaggregation method. We found that heterogeneities of energy use and energy flexibility existed across not only buildings but also air handling units (AHUs) and zones. Moreover, a small number of zones accounted for a large amount of energy use and energy flexibility; and the most energy-intensive zones are not necessarily the most energy-flexible zones. For the three tested buildings, the top 30% most energy-intensive zones accounted for around 60% of the total energy use; and the top 30% most energy-flexible zones provided around 80% of the total energy flexibility. The proposed method enables the electric grid or district energy system operators to regard the controlled energy-flexible entities as a fleet of AHUs or zones instead of a fleet of buildings and helps unlock the possibility for targeted demand flexibility strategies that balance zone-by-zone energy reduction with zone-by-zone costs to occupants. 33 pages, 18 figures
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2017Embargo end date: 01 Jan 2017Publisher:IEEE Authors: Lingxue Zhu; Nikolay Laptev;arXiv: 1709.01907
Reliable uncertainty estimation for time series prediction is critical in many fields, including physics, biology, and manufacturing. At Uber, probabilistic time series forecasting is used for robust prediction of number of trips during special events, driver incentive allocation, as well as real-time anomaly detection across millions of metrics. Classical time series models are often used in conjunction with a probabilistic formulation for uncertainty estimation. However, such models are hard to tune, scale, and add exogenous variables to. Motivated by the recent resurgence of Long Short Term Memory networks, we propose a novel end-to-end Bayesian deep model that provides time series prediction along with uncertainty estimation. We provide detailed experiments of the proposed solution on completed trips data, and successfully apply it to large-scale time series anomaly detection at Uber. To appear in DSBDA-2017 @ ICDM'17
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icdmw.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 191 citations 191 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icdmw.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yujia Li; Shunbo Lei; Wei Sun; Chenxi Hu; Yunhe Hou;arXiv: 2207.00741
When performing the resilience enhancement for distribution networks, there are two obstacles to reliably model the uncertain contingencies: 1) decision-dependent uncertainty (DDU) due to various line hardening decisions, and 2) distributional ambiguity due to limited outage information during extreme weather events (EWEs). To address these two challenges, this paper develops scenario-wise decision-dependent ambiguity sets (SWDD-ASs), where the DDU and distributional ambiguity inherent in EWE-induced contingencies are simultaneously captured for each possible EWE scenario. Then, a two-stage trilevel decision-dependent distributionally robust resilient enhancement (DD-DRRE) model is formulated, whose outputs include the optimal line hardening, distributed generation (DG) allocation, and proactive network reconfiguration strategy under the worst-case distributions in SWDD-ASs. Subsequently, the DD-DRRE model is equivalently recast to a mixed-integer linear programming (MILP)-based master problem and multiple scenario-wise subproblems, facilitating the adoption of a customized column-and-constraint generation (C&CG) algorithm. Finally, case studies demonstrate a remarkable improvement in the out-of-sample performance of our model, compared to its prevailing stochastic and robust counterparts. Moreover, the potential values of incorporating the ambiguity and distributional information are quantitatively estimated, providing a useful reference for planners with different budgets and risk-aversion levels.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3310979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3310979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2020Embargo end date: 01 Jan 2019 United StatesPublisher:IEEE Funded by:NSF | Risk Assessment of Power ...NSF| Risk Assessment of Power Systems to Extreme Events using Polynomial-Chaos-based MethodsHu, Zhixiong; Xu, Yijun; Korkali, Mert; Chen, Xiao; Mili, Lamine M.; Tong, Charles H.;The increasing penetration of renewable energy resources in power systems, represented as random processes, converts the traditional deterministic economic dispatch problem into a stochastic one. To solve this stochastic economic dispatch, the conventional Monte Carlo method is prohibitively time consuming for medium- and large-scale power systems. To overcome this problem, we propose in this paper a novel Gaussian-process-emulator-based approach to quantify the uncertainty in the stochastic economic dispatch considering wind power penetration. Based on the dimension-reduction results obtained by the Karhunen-Lo��ve expansion, a Gaussian-process emulator is constructed. This surrogate allows us to evaluate the economic dispatch solver at sampled values with a negligible computational cost while maintaining a desirable accuracy. Simulation results conducted on the IEEE 118-bus system reveal that the proposed method has an excellent performance as compared to the traditional Monte Carlo method.
http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1109/isgt45...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt45199.2020.9087714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1109/isgt45...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt45199.2020.9087714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 FrancePublisher:IOP Publishing Funded by:ANR | MMUniverse, SNSF | Testing General Relativit...ANR| MMUniverse ,SNSF| Testing General Relativity with Cosmological ObservationsAuthors: He, Yutong; Roper Pol, Alberto; Brandenburg, Axel;arXiv: 2212.06082
AbstractWe study the propagation of cosmological gravitational wave (GW) backgrounds from the early radiation era until the present day in modified theories of gravity. Comparing to general relativity (GR), we study the effects that modified gravity parameters, such as the GW friction αMand the tensor speed excessαT, have on the present-day GW spectrum. We use both the WKB estimate, which provides an analytical description but fails at superhorizon scales, and numerical simulations that allow us to go beyond the WKB approximation. We show that a constantαTmakes relatively insignificant changes to the GR solution, especially taking into account the constraints on its value from GW observations by the LIGO-Virgo collaboration, whileαMcan introduce modifications to the spectral slopes of the GW energy spectrum in the low-frequency regime depending on the considered time evolution ofαM. The latter effect is additional to the damping or growth occurring equally at all scales that can be predicted by the WKB approximation. In light of the recent observations by pulsar timing array (PTA) collaborations, and the potential observations by future detectors such as SKA, LISA, DECIGO, BBO, or ET, we show that, in most of the cases, constraints cannot be placed on the effects ofαMand the initial GW energy density ℰ*GWseparately, but only on the combined effects of the two, unless the signal is observed at different frequency ranges. In particular, we provide some constraints on the combined effects from the reported PTA observations.
Journal of Cosmology... arrow_drop_down Journal of Cosmology and Astroparticle PhysicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1475-7516/2023/06/025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Cosmology... arrow_drop_down Journal of Cosmology and Astroparticle PhysicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1475-7516/2023/06/025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Journal 2022Embargo end date: 01 Jan 2020 United StatesPublisher:IEEE Authors: Samuel Chevalier; Federico Martin Ibanez; Kathleen Cavanagh; Konstantin Turitsyn; +2 AuthorsSamuel Chevalier; Federico Martin Ibanez; Kathleen Cavanagh; Konstantin Turitsyn; Luca Daniel; Petr Vorobev;arXiv: 2011.06707
handle: 1721.1/143111
DC microgrids are prone to small-signal instabilities due to the presence of tightly regulated loads. This paper develops a decentralized stability certificate which is capable of certifying the small-signal stability of an islanded DC network containing such loads. Utilizing a novel homotopy approach, the proposed standards ensure that no system eigenmodes are able to cross into the unstable right half plane for a continuous range of controller gain levels. The resulting "standards" can be applied to variety of grid components which meet the specified, but non-unique, criteria. These standards thus take a step towards offering plug-and-play operability of DC microgrids. The proposed theorems are explicitly illustrated and numerically validated on multiple DC microgrid test-cases containing both buck and boost converter dynamics.
IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018Publisher:Elsevier BV Funded by:FCT | LA 2FCT| LA 2Authors: Guojun Hu; Tomasz Kozlowski;arXiv: 1805.01451
Verification, validation and uncertainty quantification (VVUQ) have become a common practice in thermal-hydraulics analysis. An important step in the uncertainty analysis is the sensitivity analysis of various uncertain input parameters. The common approach for computing the sensitivities, e.g. variance-based and regression-based methods, requires solving the governing equation multiple times, which is expensive in terms of computational cost. An alternative approach to compute the sensitivities is the adjoint method. The cost of solving an adjoint equation is comparable to the cost of solving the governing equation. Once the adjoint solution is available, the sensitivities to any number of parameters can be obtained with little cost. However, successful application of adjoint sensitivity analysis to two-phase flow simulations is rare. In this work, an adjoint sensitivity analysis framework is developed based on the discrete adjoint method and a new implicit forward solver. The framework is tested with the faucet flow problem and the BFBT benchmark. Adjoint sensitivities are shown to match analytical sensitivities very well in the faucet flow problem. The adjoint method is used to propagate uncertainty in input parameters to the void fraction in the BFBT benchmark test. The uncertainty propagation with the adjoint method is verified with the Monte Carlo method and is shown to be efficient.
Annals of Nuclear En... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Annals of Nuclear En... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu