- home
- Advanced Search
- Energy Research
- 11. Sustainability
- US
- IT
- EU
- Applied Energy
- Energy Research
- 11. Sustainability
- US
- IT
- EU
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Kristen S. Cetin;
Youngme Seo; Jasmeet Singh; Jongho Im;Kristen S. Cetin
Kristen S. Cetin in OpenAIREAbstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Luca Evangelisti; Luca Evangelisti; Antonella Rotili;Francesco Bianchi;
+5 AuthorsFrancesco Bianchi
Francesco Bianchi in OpenAIRELuca Evangelisti; Luca Evangelisti; Antonella Rotili;Francesco Bianchi;
Francesco Bianchi
Francesco Bianchi in OpenAIREGiorgio Baldinelli;
Giorgio Baldinelli
Giorgio Baldinelli in OpenAIREGianluca Vinti;
Gianluca Vinti
Gianluca Vinti in OpenAIREMarco Seracini;
Marco Seracini
Marco Seracini in OpenAIREDanilo Costarelli;
Danilo Costarelli
Danilo Costarelli in OpenAIREFrancesco Asdrubali;
Francesco Asdrubali
Francesco Asdrubali in OpenAIREhandle: 11590/327690 , 11391/1422023 , 11585/917377
Abstract The intervention on the existing building envelope thermal insulation is the main and effective solution in order to achieve a significant reduction of the building stock energy needs. The infrared technique is the methodology of the energy diagnosis aimed to identify qualitatively the principal causes of energy losses: the presence of thermal bridges. Those weak parts of the building envelope in terms of heat transfer result not easy to treat with an energy efficiency intervention, while they are gaining importance in the buildings total energy dispersion, as the level of insulation of opaque and transparent materials is continuously increasing. It is generally possible to evaluate the energy dispersions through these zones with a deep knowledge of the materials and the geometry using a numerical method. Besides, authors proposed in the past a methodology to assess the flux passing through thermal bridges with an infrared image correctly framed. The analysis of surface temperatures of the undisturbed wall and of the zone with thermal bridge, allows to define the Incidence Factor of the thermal Bridge (Itb). This parameter is strongly affected by the thermographic image accuracy, therefore, this paper deals with the development and validation of an innovative mathematical algorithm to enhance the image resolution and the consequent accuracy of the energy losses assessment. An experimental campaign in a controlled environment (hot box apparatus) has been conducted on three typologies of thermal bridge, firstly performing the thermographic survey and then applying the enhancement algorithm to the infrared images in order to compare the Itb and the linear thermal transmittance ψ values. Results showed that the proposed methodology could bring to an accuracy improvement up to 2% of the total buildings envelope energy losses evaluated by quantitative infrared thermography. Moreover, the proposed algorithm allows the implementation of a further process applicable to the images, in order to extract the physical boundaries of the hidden materials causing the thermal bridge, so revealing itself as a useful tool to identify exactly the suitable points of intervention for the thermal bridge correction. The application of the imaging process on the quantitative infrared thermography is an innovative approach that makes more accurate the evaluation of the actual heat loss of highly insulating buildings and reaching a higher detail on the detection and treating of thermal bridges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Italy, United KingdomPublisher:Elsevier BV handle: 11311/1204902
With increasing air traffic, rising fuel costs and tighter environmental targets, efficient airport ground operations are one of the key aspects towards sustainable air transportation. This complex system includes elements such as ground movement, runway scheduling and ground services. Previously, these problems were treated in isolation since information, such as landing time, pushback time and aircraft ground position, are held by different stakeholders with sometimes conflicting interests and, normally, are not shared. However, as these problems are interconnected, solutions as a result of isolated optimisation may achieve the objective of one problem but fail in the objective of the other one, missing the global optimum eventually. Potentially more energy and economic costs are thus required. In order to apply a more systematic and holistic view, this paper introduces a multi-objective integrated optimisation problem incorporating the newly proposed Active Routing concept. Built with systematic perspectives, this new model combines several elements: scheduling and routing of aircraft, 4-Dimensional Trajectory (4DT) optimisation, runway scheduling and airport bus scheduling. A holistic economic optimisation framework is also included to support the decision maker to select the economically optimal solution from a Pareto front of technically optimal solutions. To solve this problem, a multi-objective genetic algorithm is adopted and tested on real data from an international hub airport. Preliminary results show that the proposed approach is able to provide a systematic framework so that airport efficiency, environmental assessment and economic analysis could all be explicitly optimised.
CORE arrow_drop_down University of Lincoln Institutional RepositoryArticle . 2015 . Peer-reviewedData sources: University of Lincoln Institutional RepositoryQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Lincoln Institutional RepositoryArticle . 2015 . Peer-reviewedData sources: University of Lincoln Institutional RepositoryQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Research 2015Publisher:Elsevier BV Authors:Elorri Igos;
Elorri Igos
Elorri Igos in OpenAIREBenedetto Rugani;
Sameer Rege;Benedetto Rugani
Benedetto Rugani in OpenAIREEnrico Benetto;
+2 AuthorsEnrico Benetto
Enrico Benetto in OpenAIREElorri Igos;
Elorri Igos
Elorri Igos in OpenAIREBenedetto Rugani;
Sameer Rege;Benedetto Rugani
Benedetto Rugani in OpenAIREEnrico Benetto;
Enrico Benetto
Enrico Benetto in OpenAIRELaurent Drouet;
Daniel S. Zachary;Laurent Drouet
Laurent Drouet in OpenAIREAbstract Nowadays, many countries adopt an active agenda to mitigate the impact of greenhouse gas emissions by moving towards less polluting energy generation technologies. The environmental costs, directly or indirectly generated to achieve such a challenging objective, remain however largely underexplored. Until now, research has focused either on pure economic approaches such as Computable General Equilibrium (CGE) and partial equilibrium (PE) models, or on (physical) energy supply scenarios. These latter could be used to evaluate the environmental impacts of various energy saving or cleaner technologies via Life Cycle Assessment (LCA) methodology. These modelling efforts have, however, been pursued in isolation, without exploring the possible complementarities and synergies. In this study, we have undertaken a practical combination of these approaches into a common framework: on the one hand, by coupling a CGE with a PE model, and, on the other hand, by linking the outcomes from the coupling with a hybrid input–output−process based life cycle inventory. The methodological framework aimed at assessing the environmental consequences of two energy policy scenarios in Luxembourg between 2010 and 2025. The study highlights the potential of coupling CGE and PE models but also the related methodological difficulties (e.g. small number of available technologies in Luxembourg, intrinsic limitations of the two approaches, etc.). The assessment shows both environmental synergies and trade-offs due to the implementation of energy policies. For example, despite the changes in technologies towards the reduction of greenhouse gas emissions, only marginal improvements are observed in the climate change mitigation scenario as compared to the Business-As-Usual. The energy related production and imports are indeed expected to increase over time and represent a large contribution to the country’s impacts. Interestingly, side effects on other impacts than climate change or fossil resource depletion (e.g. ionising radiation and water depletion) may also occur mainly due to the use of nuclear energy in neighbouring countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2624939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2624939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Abstract Within residences, normative messaging interventions have encouraged households to engage in various pro-environmental behaviors. In norm-based intervention campaigns, it is hypothesized that more personally relevant reference groups increase norm adherence, thus improving the effectiveness of normative messaging interventions. Advanced energy grid infrastructure, such as smart meters and cloud computing, enables the creation of highly personalized behavioral reference groups in a non-invasive manner by dynamically classifying households into highly similar user groups based on usage patterns. Unfortunately, it remains unclear how readily available data on household energy use and housing characteristics affect the classification performance of dynamic behavioral reference groups. Therefore, this research evaluates the classification performance of dynamic behavioral reference groups using readily available data. An energy-cyber-physical system for personalized normative messaging interventions is trained and tested using one-year of energy use data from 2248 households in Holland, Michigan. Dynamic behavioral reference group classification proved very accurate, 94.7–95.9% for weekly feedback and 89.9–93.1% for monthly feedback using only readily available data. In addition, using more historical energy use data contributes to enhancing classification accuracy. Lastly, high classification performance for each behavioral reference group is achieved at 97.6% of precision, recall and F1-score. With the proposed system, it is possible to dynamically assign highly personalized behavioral reference groups to households every billing cycle even if behavioral patterns are subject to change. Thus, interveners will be able to deploy personalized normative feedback messages on a large scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Tony G. Reames;
Breck M. Sullivan; Lemir Teron; Dynta Trishana Munardy; +1 AuthorsTony G. Reames
Tony G. Reames in OpenAIRETony G. Reames;
Breck M. Sullivan; Lemir Teron; Dynta Trishana Munardy;Tony G. Reames
Tony G. Reames in OpenAIREMarie-Odile P. Fortier;
Marie-Odile P. Fortier
Marie-Odile P. Fortier in OpenAIREAbstract As our energy systems are transitioning towards low-carbon energy sources and their environmental and economic sustainability are assessed, their potential social impacts must also be determined. These social impacts may be disproportionate to a population, leading to energy justice concerns. The social life cycle assessment framework can be used to comprehensively address energy justice concerns by different stakeholder groups and at all life cycle stages associated with a low-carbon energy system. Indicators for a social life cycle assessment framework that addresses energy justice are introduced and discussed. These indicators are organized by four categories of stakeholders for electrical energy systems: workers, electricity consumers, local communities, and society as a whole. The social life cycle assessment framework allows for variations in justice and equity to be determined not only at the generation stage, but through multiple points in the life cycle of the same energy system, from raw material extraction, through manufacturing, transportation, distribution, electricity generation, and waste management. This framework can address potential energy justice issues along the life cycle of new energy systems and assist in their design and planning for optimizing their social sustainability without overlooking vulnerable populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Funded by:EC | AEOLUS4FUTUREEC| AEOLUS4FUTUREAuthors:Bert Blocken;
Bert Blocken;Bert Blocken
Bert Blocken in OpenAIREAbdolrahim Rezaeiha;
I.M. Kalkman;Abdolrahim Rezaeiha
Abdolrahim Rezaeiha in OpenAIREDue to growing interest in wind energy harvesting offshore as well as in the urban environment, vertical axis wind turbines (VAWTs) have recently received renewed interest. Their omni-directional capability makes them a very interesting option for use with the frequently varying wind directions typically encountered in the built environment while their scalability and low installation costs make them highly suitable for offshore wind farms. However, they require further performance optimization to become competitive with horizontal axis wind turbines (HAWTs) as they currently have a lower power coefficient (CP). This can be attributed both to the complexity of the flow around VAWTs and the significantly smaller amount of research they have received. The pitch angle is a potential parameter to enhance the performance of VAWTs. The current study investigates the variations in loads and moments on the turbine as well as the experienced angle of attack, shed vorticity and boundary layer events (leading edge and trailing edge separation, laminar-to-turbulent transition) as a function of pitch angle using Computational Fluid Dynamics (CFD) calculations. Pitch angles of −7° to +3° are investigated using Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations while turbulence is modeled with the 4-equation transition SST model. The results show that a 6.6% increase in CP can be achieved using a pitch angle of −2° at a tip speed ratio of 4. Additionally, it is found that a change in pitch angle shifts instantaneous loads and moments between upwind and downwind halves of the turbine. The shift in instantaneous moment during the revolution for various pitch angles suggests that dynamic pitching might be a very promising approach for further performance optimization.
Applied Energy arrow_drop_down Applied EnergyArticle . 2017License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 309 citations 309 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Applied EnergyArticle . 2017License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Authors:Nazari-Heris, Morteza;
Loni, Abdolah; Asadi, Somayeh; Mohammadi-ivatloo, Behnam;Nazari-Heris, Morteza
Nazari-Heris, Morteza in OpenAIREElectric vehicles (EVs) are considered a substitute for fossil-fueled vehicles due to rising fossil fuel prices and accompanying environmental concerns, and their use is predicted to increase dramatically shortly. However, the widespread use of EVs and their large-scale integration into the energy system will present several operational and technological hurdles. In the energy industry, an innovative solution known as the EVs smart parking lot (SPL) is introduced to handle EV charging and discharging electricity and energy supply challenges. This paper investigates social equity access and mobile charging stations (MCSs) for EVs, where the owner of MCSs is the EV parking lot. Accordingly, a new self-scheduling model for SPLs is presented in this paper that incorporates scheduling of the MCSs as temporary charging infrastructures while considering social equity access and optimizes SPL energy generation and storage schedule. The main objectives of this research are to (i) develop MCSs accessibility measures and quantify the equity impacts of MCSs locations by modeling prioritized demand based on several indices; (ii) determine the optimal set-points of SPL components (i.e., combined heat and power (CHP), photovoltaic system, electrical and heat-energy storage, and MCSs) to manage electrical peak demand and to maximize the economic benefits of SPLs. Results indicate that the proposed demand prioritization function model can meet the required EV charging demands for prioritized events, and the self-scheduling model for SPLs satisfies the charging demand of the EVs in the SPL location. Also, the social equity access to the EV charging stations is satisfied by analyzing the operation of MCSs around the prioritized demand of the prioritized events and social equity access indices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Elsevier BV Authors:Tian, Shan;
He, Haoyang; Kendall, Alissa;Tian, Shan
Tian, Shan in OpenAIREDavis, Steven J;
+4 AuthorsDavis, Steven J
Davis, Steven J in OpenAIRETian, Shan;
He, Haoyang; Kendall, Alissa;Tian, Shan
Tian, Shan in OpenAIREDavis, Steven J;
Ogunseitan, Oladele A; Schoenung, Julie M; Samuelsen, Scott;Davis, Steven J
Davis, Steven J in OpenAIRETarroja, Brian;
Tarroja, Brian
Tarroja, Brian in OpenAIREAuthor(s): Tian, S; He, H; Kendall, A; Davis, SJ; Ogunseitan, OA; Schoenung, JM; Samuelsen, S; Tarroja, B | Abstract: Energy storage systems are critical for enabling the environmental benefits associated with capturing renewable energy to displace fossil fuel-based generation, yet producing these systems also contributes to environmental impacts through their materials use and manufacturing. As energy storage capacity is scaled up to support increasingly renewable grids, the environmental benefits from their use may scale at different rates than the environmental impacts from their production. This implies the existence of capacity thresholds beyond which installing additional storage capacity may be environmentally detrimental. Identifying such thresholds are important for ensuring that energy storage capacity selection in future grids are consistent with net emissions reduction goals, but such thresholds have not been studied in the present literature. To identify such thresholds, here we combine electric grid dispatch modeling with life cycle analysis to compare how the emissions reductions from deploying three different flow battery energy storage types on a future California grid (g80% wind and solar) compare with emissions contributions from producing such batteries as total battery capacity installed on the grid increases. Depending on the type of battery and environmental impact indicator (greenhouse gas or particulate matter emissions), we find that the marginal environmental benefits of storage begin to diminish at deployed capacities of 38–76% of the mean daily renewable generation (256–512 GWh in our California scenarios) and reach zero at 105–284% of mean daily renewable generation (700–1810 GWh). Such storage capacities are conceivable, but upstream impacts of storage must be assessed in evaluating the environmental benefits of large-scale storage deployment, or they could negate the environmental benefits of regional electricity system decarbonization.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5ns3c3zdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5ns3c3zdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors:Abd Alla S.;
Abd Alla S.
Abd Alla S. in OpenAIREBianco Vincenzo;
Bianco Vincenzo
Bianco Vincenzo in OpenAIRETagliafico Luca Antonio;
Tagliafico Luca Antonio
Tagliafico Luca Antonio in OpenAIREScarpa Federico;
Scarpa Federico
Scarpa Federico in OpenAIREhandle: 11367/114983 , 11567/1007557
Abstract The implementation of energy efficiency measures is an effective way to gain energy savings in the Italian residential sector. This paper assesses the embodied energy impact related to the envelope insulation and evaluates the energy and carbon payback of the efficiency measures. The proposed method consists of (1) an estimation of the baseline operational energy consumption, (2) simulations of realistic retrofit solutions and, (3) the assessment of the ‘retrofitting’ embodied energy and the energy and carbon payback time calculation. The payback is based on the comparison between the saved operational energy and the embodied energy of the materials selected for insulation. Ten Italian cities are analysed, and the results show a deep dependence on the climate zone. In Northern Italian cities, envelope insulation gains relevance as the energy and carbon payback periods are shorter, about 3 years against the 84 years for the Southern city of Palermo. The optimal thickness is estimated for the city of Milan considering the building’s typology, the insulation materials, and the energy payback. This study shows how the total energy savings can be used as a criterion to obtain design indications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu