- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Open Source
- US
- EU
- Energies
- Energy Research
- Open Access
- Closed Access
- Open Source
- US
- EU
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013Publisher:MDPI AG Funded by:NSF | MRI: Acquisition of a Fie..., NSF | Research on Environmental...NSF| MRI: Acquisition of a Field Emission-Scanning Electron Microscope for Nanoscience Research and Education ,NSF| Research on Environmental Sustainability of Semi-Arid Coastal Areas (RESSACA)Authors: Jingbo Liu; Yuan Yuan; Sajid Bashir;doi: 10.3390/en6126476
The focus of this research lies on fundamental research to provide guidelines for the design of new nanocatalyst toward improvement of the performance of proton exchange membrane fuel cells (PEMFCs). To achieve this overarching goal, several specific steps were taken with aims to: (1) provide guidelines for the design of new catalysts; (2) promote nanocatalyst applications towards alternative energy applications; and (3) integrate advanced instrumentation into nanocharacterization and fuel cell (FC) electrochemical behavior. In tandem with these goals, the cathode catalysts were extensively refined to improve the performance of PEMFCs and minimize noble metal usage. In this study, the major accomplishment was producing aligned carbon nanotubes (ACNTs), which were then modified by platinum (Pt) nanoparticles via a post-functionalization colloidal chemistry approach. The Pt-ACNTs demonstrated improved cathodic catalycity, by building better device endurance and decreased Pt loading. It was also determined that surface mechanical properties, such as elastic modulus and hardness were increased. Collectively, these enhancements provided an improved FC device. The electrochemical analyses indicated that the power density of the PEMFCs was increased to 900 mW/cm2 and current density to 3000 mA/cm2, respectively. The Pt loading was controlled at lower than 0.2 mg/cm2 to decrease the manufacturing expenses.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/12/6476/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6126476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/12/6476/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6126476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 CanadaPublisher:MDPI AG Funded by:NSERCNSERCLaadila, Mohamed Amine; Suresh, Gayatri; Rouissi, Tarek; Kumar, Pratik; Brar, Satinder Kaur; Cheikh, Ridha Ben; Abokitse, Kofi; Galvez, Rosa; Jacob, Colin;doi: 10.3390/en13041003
Recycled polylactic acid (PLAr) was reinforced with treated nanocellulosic hemp fibers for biocomposite fabrication. Cellulosic fibers were extracted from hemp fibers chemically and treated enzymatically. Treated nanocellulosic fibers (NCF) were analyzed by Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Biocomposite fabrication was done with PLAr and three concentrations of treated NCF (0.1%, 0.25%, and 1% (v/v)) and then studied for thermal stability and mechanical properties. Increased thermal stability was observed with increasing NCF concentrations. The highest value for Young’s modulus was for PLAr + 0.25% (v/v) NCF (250.28 ± 5.47 MPa), which was significantly increased compared to PLAr (p = 0.022). There was a significant decrease in the tensile stress at break point for PLAr + 0.25% (v/v) NCF and PLAr + 1% (v/v) NCF as compared to control (p = 0.006 and 0.002, respectively). No significant difference was observed between treatments for tensile stress at yield.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/1003/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13041003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/1003/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13041003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Jiwei Wen; Chen Chen;doi: 10.3390/en10122021
Oil shale is a kind of potential alternative energy source for petroleum and has attracted the attention of energy researchers all over the world. Borehole hydraulic mining has more prominent advantages than both conventional open-pit mining and underground mining. It is very important to attempt to use the borehole hydraulic mining method to exploit underground oil shale. The nozzle is the key component of borehole hydraulic mining and reasonable mining parameters are also crucial in exploiting underground oil shale efficiently. The straight cone nozzle and the oil shale of Huadian area will be taken as the research objects. The self-developed, multifunctional, experimental device can test both the jet’s performance as well as the breaking of oil shale by the high-pressure water jet using the straight cone nozzle and varying structural parameters. Comprehensive analysis of the results of an orthogonal experimental design, including range analysis and variance analysis, demonstrate the optimal structural parameters of a straight cone nozzle as follows: the outlet diameter is 4 mm, the length to diameter ratio is 2.5, and the contraction angle is 60°. In addition, in order to maximize the efficiency of borehole hydraulic mining for Huadian oil shale, the non-submerged jet should be placed parallel to the oil shale bedding. These results can provide scientific and valuable references for borehole hydraulic mining of oil shale.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/12/2021/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10122021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/12/2021/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10122021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Hancock, Stephen; Westover, Tyler;doi: 10.3390/en15031151
Nuclear power plants in the United States are increasingly challenged to compete in wholesale electricity markets due to the low electricity costs and increasingly dynamic grid conditions from competing generation sources. An alternative market for nuclear power is industrial facilities that can use the thermal and/or electrical power generated by a nuclear power plant to offset the economic losses incurred by electricity market challenges. A generic pressurized water reactor (PWR) simulator was used to show the results of a basic design for a generic thermal power extraction system and tests were run using a set of procedures to show what happens when a nuclear power plant transitions from full electrical power dispatch to 15% and 50% thermal power dispatch. This type of operation leads to losses in turbine performance efficiency due to the deviation from the design operating point, but because the thermal power is also used by the industry load without conversion losses, the combined thermal efficiency of the PWR increases. For the 15% case, the thermal efficiency increased from 32% to 41.9%, while for the 50% case, the efficiency increased up to 60.1%. In addition, for 50% thermal power dispatch, the power dissipated by the condenser decreased from approximately 2000 to approximately 1300 MW (thermal), indicating a substantially diminished impact on the environment in terms of releasing heat into the cooling water reservoir.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1151/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1151/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Krastev V. K.; Falcucci G.;doi: 10.3390/en11040715
handle: 2108/212808
In this paper, recent achievements in the application of the lattice Boltzmann method (LBM) to complex fluid flows are reported. More specifically, we focus on flows through reactive porous media, such as the flow through the substrate of a selective catalytic reactor (SCR) for the reduction of gaseous pollutants in the automotive field; pulsed-flow analysis through heterogeneous catalyst architectures; and transport and electro-chemical phenomena in microbial fuel cells (MFC) for novel waste-to-energy applications. To the authors’ knowledge, this is the first known application of LBM modeling to the study of MFCs, which represents by itself a highly innovative and challenging research area. The results discussed here essentially confirm the capabilities of the LBM approach as a flexible and accurate computational tool for the simulation of complex multi-physics phenomena of scientific and technological interest, across physical scales.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: He Shen; Ni Li; Jim Kuo; Kevin Pan;doi: 10.3390/en13040865
One direction in optimizing wind farm production is reducing wake interactions from upstream turbines. This can be done by optimizing turbine layout as well as optimizing turbine yaw and pitch angles. In particular, wake steering by optimizing yaw angles of wind turbines in farms has received significant attention in recent years. One of the challenges in yaw optimization is developing fast optimization algorithms which can find good solutions in real-time. In this work, we developed a random search algorithm to optimize yaw angles. Optimization was performed on a layout of 39 turbines in a 2 km by 2 km domain. Algorithm specific parameters were tuned for highest solution quality and lowest computational cost. Testing showed that this algorithm can find near-optimal (<1% of best known solutions) solutions consistently over multiple runs, and that quality solutions can be found under 200 iterations. Empirical results show that as wind farm density increases, the potential for yaw optimization increases significantly, and that quality solutions are likely to be plentiful and not unique.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/865/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/865/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | IVANHOEEC| IVANHOEAndrea Magrini; Denis Buosi; Francesco Poltronieri; Elena De Leo; Ernesto Benini;doi: 10.3390/en16083323
handle: 11577/3479877
Gas turbine fuel burn for an aircraft engine can be obtained analytically using thermodynamic cycle analysis. For large-diameter ultra-high bypass ratio turbofans, the impact of nacelle drag and propulsion system integration must be accounted for in order to obtain realistic estimates of the installed specific fuel consumption. However, simplified models cannot fully represent the complexity of installation effects. In this paper, we present a method that combines thermodynamic cycle analysis with detailed Computational Fluid Dynamics (CFD) modelling of the installation aerodynamics to obtain the fuel consumption at a given mission point. The flow field and propulsive forces arising in a transport aircraft powered by an ultra-high bypass ratio turbofan at cruise are first examined to characterise the operating conditions and measure the sensitivity to variations of the incidence at transonic flight. The proposed methodology, in which dynamic balance of the vehicle is achieved at each integration point, is then applied along a cruise segment to calculate the cumulative fuel burn and the change in the specific fuel consumption.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: SygmaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: SygmaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Mehdi Hosseinzadeh; Farzad Rajaei Salmasi;doi: 10.3390/en13133479
This paper provides an overview of islanding fault detection in microgrids. Islanding fault is a condition in which the microgrid gets disconnected from the microgrid unintentionally due to any fault in the utility grid. This paper surveys the extensive literature concerning the development of islanding fault detection techniques which can be classified into remote and local techniques, where the local techniques can be further classified as passive, active, and hybrid. Various detection methods in each class are studied, and advantages and disadvantages of each method are discussed. A comprehensive list of references is used to conduct this survey, and opportunities and directions for future research are highlighted.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United StatesPublisher:MDPI AG Authors: Mohamed Elsafih; Mashhad Fahes; Catalin Teodoriu;doi: 10.3390/en14041148
handle: 11244/329491
Matrix acidizing is a highly successful, effective, and relatively inexpensive approach to enhancing well productivity in carbonate formations. Accordingly, there has been little motivation to address the ways to optimize the acid stimulation process better. Acid-in-oil emulsions that form during this process cause one of the most challenging problems that negatively impact the performance and deliverability, especially when these emulsions are highly stable over extended periods. Such stable emulsions can plug the flow path of oil causing high resistance to flow and potentially reducing well productivity. De-emulsifiers are some of the most widely used acid additives targeting the reduction of emulsion stability. However, there is doubt in the research community on whether there is enough shear mixing that can cause the formation of emulsions inside the rock matrix. Besides, the effectiveness of de-emulsifiers in eliminating such emulsions in the pore space has not been investigated. In the current oil price market, there is a need to be more vigilant regarding the cost of well stimulation and the added value from the various additives. While laboratory work on matrix acidizing in carbonate formations is abundant, the work on oil-saturated samples is rare, and therefore, the effect of emulsions on the acidizing process has not been widely documented. In this work, we present a stacked study of bottle tests and core flooding tests designed to investigate the de-emulsifiers’ role in the rock matrix. The results reveal that (1) emulsion-risk in the pore space is real, and (2) the addition of de-emulsifiers to the acid allows for efficient backflow of oil, revealing an improvement in the performance of the acidizing treatment.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1148/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/11244/329491Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1148/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/11244/329491Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | TRUST-AIEC| TRUST-AINikos Sakkas; Sofia Yfanti; Pooja Shah; Nikitas Sakkas; Christina Chaniotakis; Costas Daskalakis; Eduard Barbu; Marharyta Domnich;Building electric energy is characterized by a significant increase of its uses (e.g. vehicle charging), a rapidly declining cost of all related data collection and a proliferation of smart grid concepts, including diverse and flexible electricity pricing schemes. Not surprisingly, an increased number of approaches have been proposed for its modeling and forecasting. In this work, we place our emphasis on three forecasting related issues. First, on the forecasting explainability, i.e. the ability to understand and explain to the user what shapes the forecast. To this extent we rely on concepts and approaches that are inherently explainable, such as the evolutionary approach of genetic programming (GP) and its associated symbolic expressions, as well as the so-called SHAP (SHapley Additive eXplanations) values, which is a well established model agnostic approach for explainability, especially in terms of feature importance. Second, we investigate the impact of the training timeframe on the forecasting accuracy; this is driven by the realization that a fast training would allow for faster deployment of forecasting in real life solutions. And third, we explore the concept of counterfactual analysis on actionable features, i.e. features that the user can really act upon and which therefore present an inherent advantage when it comes to decision support. We have found that SHAP values can provide important insights into the model explainability. As for GP models, we have found comparable and in some cases superior accuracy when compared to its neural-network and time-series counterparts but a rather questionable potential to produce crisp and insightful symbolic expressions, allowing a better insight into the model performance. We have also found, and report here on an important potential especially for practical, decision support, solutions of counterfactuals built on actionable features and short training timeframes.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013Publisher:MDPI AG Funded by:NSF | MRI: Acquisition of a Fie..., NSF | Research on Environmental...NSF| MRI: Acquisition of a Field Emission-Scanning Electron Microscope for Nanoscience Research and Education ,NSF| Research on Environmental Sustainability of Semi-Arid Coastal Areas (RESSACA)Authors: Jingbo Liu; Yuan Yuan; Sajid Bashir;doi: 10.3390/en6126476
The focus of this research lies on fundamental research to provide guidelines for the design of new nanocatalyst toward improvement of the performance of proton exchange membrane fuel cells (PEMFCs). To achieve this overarching goal, several specific steps were taken with aims to: (1) provide guidelines for the design of new catalysts; (2) promote nanocatalyst applications towards alternative energy applications; and (3) integrate advanced instrumentation into nanocharacterization and fuel cell (FC) electrochemical behavior. In tandem with these goals, the cathode catalysts were extensively refined to improve the performance of PEMFCs and minimize noble metal usage. In this study, the major accomplishment was producing aligned carbon nanotubes (ACNTs), which were then modified by platinum (Pt) nanoparticles via a post-functionalization colloidal chemistry approach. The Pt-ACNTs demonstrated improved cathodic catalycity, by building better device endurance and decreased Pt loading. It was also determined that surface mechanical properties, such as elastic modulus and hardness were increased. Collectively, these enhancements provided an improved FC device. The electrochemical analyses indicated that the power density of the PEMFCs was increased to 900 mW/cm2 and current density to 3000 mA/cm2, respectively. The Pt loading was controlled at lower than 0.2 mg/cm2 to decrease the manufacturing expenses.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/12/6476/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6126476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/12/6476/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6126476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 CanadaPublisher:MDPI AG Funded by:NSERCNSERCLaadila, Mohamed Amine; Suresh, Gayatri; Rouissi, Tarek; Kumar, Pratik; Brar, Satinder Kaur; Cheikh, Ridha Ben; Abokitse, Kofi; Galvez, Rosa; Jacob, Colin;doi: 10.3390/en13041003
Recycled polylactic acid (PLAr) was reinforced with treated nanocellulosic hemp fibers for biocomposite fabrication. Cellulosic fibers were extracted from hemp fibers chemically and treated enzymatically. Treated nanocellulosic fibers (NCF) were analyzed by Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Biocomposite fabrication was done with PLAr and three concentrations of treated NCF (0.1%, 0.25%, and 1% (v/v)) and then studied for thermal stability and mechanical properties. Increased thermal stability was observed with increasing NCF concentrations. The highest value for Young’s modulus was for PLAr + 0.25% (v/v) NCF (250.28 ± 5.47 MPa), which was significantly increased compared to PLAr (p = 0.022). There was a significant decrease in the tensile stress at break point for PLAr + 0.25% (v/v) NCF and PLAr + 1% (v/v) NCF as compared to control (p = 0.006 and 0.002, respectively). No significant difference was observed between treatments for tensile stress at yield.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/1003/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13041003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/1003/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13041003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Jiwei Wen; Chen Chen;doi: 10.3390/en10122021
Oil shale is a kind of potential alternative energy source for petroleum and has attracted the attention of energy researchers all over the world. Borehole hydraulic mining has more prominent advantages than both conventional open-pit mining and underground mining. It is very important to attempt to use the borehole hydraulic mining method to exploit underground oil shale. The nozzle is the key component of borehole hydraulic mining and reasonable mining parameters are also crucial in exploiting underground oil shale efficiently. The straight cone nozzle and the oil shale of Huadian area will be taken as the research objects. The self-developed, multifunctional, experimental device can test both the jet’s performance as well as the breaking of oil shale by the high-pressure water jet using the straight cone nozzle and varying structural parameters. Comprehensive analysis of the results of an orthogonal experimental design, including range analysis and variance analysis, demonstrate the optimal structural parameters of a straight cone nozzle as follows: the outlet diameter is 4 mm, the length to diameter ratio is 2.5, and the contraction angle is 60°. In addition, in order to maximize the efficiency of borehole hydraulic mining for Huadian oil shale, the non-submerged jet should be placed parallel to the oil shale bedding. These results can provide scientific and valuable references for borehole hydraulic mining of oil shale.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/12/2021/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10122021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/12/2021/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10122021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Hancock, Stephen; Westover, Tyler;doi: 10.3390/en15031151
Nuclear power plants in the United States are increasingly challenged to compete in wholesale electricity markets due to the low electricity costs and increasingly dynamic grid conditions from competing generation sources. An alternative market for nuclear power is industrial facilities that can use the thermal and/or electrical power generated by a nuclear power plant to offset the economic losses incurred by electricity market challenges. A generic pressurized water reactor (PWR) simulator was used to show the results of a basic design for a generic thermal power extraction system and tests were run using a set of procedures to show what happens when a nuclear power plant transitions from full electrical power dispatch to 15% and 50% thermal power dispatch. This type of operation leads to losses in turbine performance efficiency due to the deviation from the design operating point, but because the thermal power is also used by the industry load without conversion losses, the combined thermal efficiency of the PWR increases. For the 15% case, the thermal efficiency increased from 32% to 41.9%, while for the 50% case, the efficiency increased up to 60.1%. In addition, for 50% thermal power dispatch, the power dissipated by the condenser decreased from approximately 2000 to approximately 1300 MW (thermal), indicating a substantially diminished impact on the environment in terms of releasing heat into the cooling water reservoir.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1151/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1151/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Krastev V. K.; Falcucci G.;doi: 10.3390/en11040715
handle: 2108/212808
In this paper, recent achievements in the application of the lattice Boltzmann method (LBM) to complex fluid flows are reported. More specifically, we focus on flows through reactive porous media, such as the flow through the substrate of a selective catalytic reactor (SCR) for the reduction of gaseous pollutants in the automotive field; pulsed-flow analysis through heterogeneous catalyst architectures; and transport and electro-chemical phenomena in microbial fuel cells (MFC) for novel waste-to-energy applications. To the authors’ knowledge, this is the first known application of LBM modeling to the study of MFCs, which represents by itself a highly innovative and challenging research area. The results discussed here essentially confirm the capabilities of the LBM approach as a flexible and accurate computational tool for the simulation of complex multi-physics phenomena of scientific and technological interest, across physical scales.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: He Shen; Ni Li; Jim Kuo; Kevin Pan;doi: 10.3390/en13040865
One direction in optimizing wind farm production is reducing wake interactions from upstream turbines. This can be done by optimizing turbine layout as well as optimizing turbine yaw and pitch angles. In particular, wake steering by optimizing yaw angles of wind turbines in farms has received significant attention in recent years. One of the challenges in yaw optimization is developing fast optimization algorithms which can find good solutions in real-time. In this work, we developed a random search algorithm to optimize yaw angles. Optimization was performed on a layout of 39 turbines in a 2 km by 2 km domain. Algorithm specific parameters were tuned for highest solution quality and lowest computational cost. Testing showed that this algorithm can find near-optimal (<1% of best known solutions) solutions consistently over multiple runs, and that quality solutions can be found under 200 iterations. Empirical results show that as wind farm density increases, the potential for yaw optimization increases significantly, and that quality solutions are likely to be plentiful and not unique.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/865/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/865/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | IVANHOEEC| IVANHOEAndrea Magrini; Denis Buosi; Francesco Poltronieri; Elena De Leo; Ernesto Benini;doi: 10.3390/en16083323
handle: 11577/3479877
Gas turbine fuel burn for an aircraft engine can be obtained analytically using thermodynamic cycle analysis. For large-diameter ultra-high bypass ratio turbofans, the impact of nacelle drag and propulsion system integration must be accounted for in order to obtain realistic estimates of the installed specific fuel consumption. However, simplified models cannot fully represent the complexity of installation effects. In this paper, we present a method that combines thermodynamic cycle analysis with detailed Computational Fluid Dynamics (CFD) modelling of the installation aerodynamics to obtain the fuel consumption at a given mission point. The flow field and propulsive forces arising in a transport aircraft powered by an ultra-high bypass ratio turbofan at cruise are first examined to characterise the operating conditions and measure the sensitivity to variations of the incidence at transonic flight. The proposed methodology, in which dynamic balance of the vehicle is achieved at each integration point, is then applied along a cruise segment to calculate the cumulative fuel burn and the change in the specific fuel consumption.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: SygmaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/8/3323/pdfData sources: SygmaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Mehdi Hosseinzadeh; Farzad Rajaei Salmasi;doi: 10.3390/en13133479
This paper provides an overview of islanding fault detection in microgrids. Islanding fault is a condition in which the microgrid gets disconnected from the microgrid unintentionally due to any fault in the utility grid. This paper surveys the extensive literature concerning the development of islanding fault detection techniques which can be classified into remote and local techniques, where the local techniques can be further classified as passive, active, and hybrid. Various detection methods in each class are studied, and advantages and disadvantages of each method are discussed. A comprehensive list of references is used to conduct this survey, and opportunities and directions for future research are highlighted.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United StatesPublisher:MDPI AG Authors: Mohamed Elsafih; Mashhad Fahes; Catalin Teodoriu;doi: 10.3390/en14041148
handle: 11244/329491
Matrix acidizing is a highly successful, effective, and relatively inexpensive approach to enhancing well productivity in carbonate formations. Accordingly, there has been little motivation to address the ways to optimize the acid stimulation process better. Acid-in-oil emulsions that form during this process cause one of the most challenging problems that negatively impact the performance and deliverability, especially when these emulsions are highly stable over extended periods. Such stable emulsions can plug the flow path of oil causing high resistance to flow and potentially reducing well productivity. De-emulsifiers are some of the most widely used acid additives targeting the reduction of emulsion stability. However, there is doubt in the research community on whether there is enough shear mixing that can cause the formation of emulsions inside the rock matrix. Besides, the effectiveness of de-emulsifiers in eliminating such emulsions in the pore space has not been investigated. In the current oil price market, there is a need to be more vigilant regarding the cost of well stimulation and the added value from the various additives. While laboratory work on matrix acidizing in carbonate formations is abundant, the work on oil-saturated samples is rare, and therefore, the effect of emulsions on the acidizing process has not been widely documented. In this work, we present a stacked study of bottle tests and core flooding tests designed to investigate the de-emulsifiers’ role in the rock matrix. The results reveal that (1) emulsion-risk in the pore space is real, and (2) the addition of de-emulsifiers to the acid allows for efficient backflow of oil, revealing an improvement in the performance of the acidizing treatment.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1148/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/11244/329491Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1148/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/11244/329491Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | TRUST-AIEC| TRUST-AINikos Sakkas; Sofia Yfanti; Pooja Shah; Nikitas Sakkas; Christina Chaniotakis; Costas Daskalakis; Eduard Barbu; Marharyta Domnich;Building electric energy is characterized by a significant increase of its uses (e.g. vehicle charging), a rapidly declining cost of all related data collection and a proliferation of smart grid concepts, including diverse and flexible electricity pricing schemes. Not surprisingly, an increased number of approaches have been proposed for its modeling and forecasting. In this work, we place our emphasis on three forecasting related issues. First, on the forecasting explainability, i.e. the ability to understand and explain to the user what shapes the forecast. To this extent we rely on concepts and approaches that are inherently explainable, such as the evolutionary approach of genetic programming (GP) and its associated symbolic expressions, as well as the so-called SHAP (SHapley Additive eXplanations) values, which is a well established model agnostic approach for explainability, especially in terms of feature importance. Second, we investigate the impact of the training timeframe on the forecasting accuracy; this is driven by the realization that a fast training would allow for faster deployment of forecasting in real life solutions. And third, we explore the concept of counterfactual analysis on actionable features, i.e. features that the user can really act upon and which therefore present an inherent advantage when it comes to decision support. We have found that SHAP values can provide important insights into the model explainability. As for GP models, we have found comparable and in some cases superior accuracy when compared to its neural-network and time-series counterparts but a rather questionable potential to produce crisp and insightful symbolic expressions, allowing a better insight into the model performance. We have also found, and report here on an important potential especially for practical, decision support, solutions of counterfactuals built on actionable features and short training timeframes.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu