Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
    Clear
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
101 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2025-2025
  • other engineering and technologies
  • IN
  • US
  • EU
  • BE

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This paper considers the sequential design of remedial control actions in response to system anomalies for the ultimate objective of preventing blackouts. A physics-guided reinforcement learning (RL) framework is designed to identify effective sequences of real-time remedial look-ahead decisions accounting for the long-term impact on the system's stability. The paper considers a space of control actions that involve both discrete-valued transmission line-switching decisions (line reconnections and removals) and continuous-valued generator adjustments. To identify an effective blackout mitigation policy, a physics-guided approach is designed that uses power-flow sensitivity factors associated with the power transmission network to guide the RL exploration during agent training. Comprehensive empirical evaluations using the open-source Grid2Op platform demonstrate the notable advantages of incorporating physical signals into RL decisions, establishing the gains of the proposed physics-guided approach compared to its black box counterparts. One important observation is that strategically~\emph{removing} transmission lines, in conjunction with multiple real-time generator adjustments, often renders effective long-term decisions that are likely to prevent or delay blackouts.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48550/ar...
    Article . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    ResearchGate Data
    Preprint . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48550/ar...
      Article . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      ResearchGate Data
      Preprint . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This study introduces a mixed-integer linear programming (MILP) model, effectively co-optimizing patrolling, damage assessment, fault isolation, repair, and load re-energization processes. The model is designed to solve a vital operational conundrum: deciding between further network exploration to obtain more comprehensive data or addressing the repair of already identified faults. As information on the fault location and repair timelines becomes available, the model allows for dynamic adaptation of crew dispatch decisions. In addition, this study proposes a conservative power flow constraint set that considers two network loading scenarios within the final network configuration. This approach results in the determination of an upper and a lower bound for node voltage levels and an upper bound for power line flows. To underscore the practicality and scalability of the proposed model, we have demonstrated its application using IEEE 123-node and 8500-node test systems, where it delivered promising results.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    https://dx.doi.org/10.48550/ar...
    Article . 2023
    License: CC BY NC SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      https://dx.doi.org/10.48550/ar...
      Article . 2023
      License: CC BY NC SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rustam Khan; Praveen Kumar Agarwal; Swastik Acharya;

    The present work aims to perform a thermoeconomic assessment of a battery pack integrating a novel compact coolant system through which Al2O3, TiO2, CuO, and Cu nanofluids flow at different Reynolds numbers and concentrations. The inlets in the north and west and the outlets in the south and east directions are found to be the best configuration since the least number of batteries exhibits higher temperatures. A nanofluid-based cooling system offers an improvement of 15 K in battery core temperature when compared to the pack without any coolant system at 200 s; however, a reduction of 0.3 K is noticed when compared to water. CuO nanoparticles perform better at a low concentration of 2%, whereas Cu particles have an advantage over other nanoparticles at a concentration greater than 2%. An economic analysis of the nanofluid has also been performed, eradicating the idea of using Cu–water nanofluid in the coolant system owing to its significantly high cost. Though the cost of the CuO and Al2O3 nanofluid is 13 times lower than Cu, using pure water as the coolant is recommended since there is a marginal reduction of 0.1–0.3 K in the battery pack temperature when water is replaced by nanofluid.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: null Pushparaj; Amod Kumar; Garima Saini;

    COVID-19 (Corona Virus Disease of 2019) is a global pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. This disease has significantly impacted every aspect of people's lives, including their work style, leisure activities, and use of technology. Additionally, due to psychological factors or other reasons, there has been a surge in deaths from cardiovascular failure during the pandemic. As COVID-19 is a silent killer whose symptoms only become visible after significant damage has been done, constant monitoring of heart parameters is crucial to address this issue. This paper explores the emerging trends in monitoring vital signs such as the electrocardiogram (ECG), heart rate, respiration rate (breaths), related sensors, remote sensor organization, and telemedicine innovations. Furthermore, this paper discusses the potential application of non-contact radar-based remote monitoring for vital sign monitoring of affected patients.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Dilpreet, Singh; Balak Das, Kurmi; Amrinder, Singh;

    Graphene oxide, a derivative of graphene, has recently emerged as a promising nanomaterial in the biomedical field due to its unique properties. Its potential as a nanocarrier in the treatment of Alzheimer's disease represents a significant advancement. This abstract outlines a study focused on utilizing graphene oxide to reduce the toxicity of Alzheimer's proteins, marking a revolutionary approach in treatment strategies. The pathological features of Alzheimer’s disease, primarily focusing on the accumulation and toxicity of amyloid-beta proteins, have been described in this review. These proteins are known to form plaques in the brain, leading to neuronal damage and the progression of Alzheimer's disease. The current therapeutic strategies and their limitations are briefly reviewed, highlighting the need for innovative approaches. Graphene oxide, with its high surface area, biocompatibility, and ability to cross the blood-brain barrier, is introduced as a novel nanocarrier. The methodology involves functionalizing graphene oxide sheets with specific ligands that target amyloid-beta proteins. This functionalization facilitates the binding and removal of these toxic proteins from the brain, potentially alleviating the symptoms of Alzheimer's disease. Preliminary findings indicate a significant reduction in amyloid-beta toxicity in neuronal cell cultures treated with graphene oxide nanocarriers. The study also explores the biocompatibility and safety profile of graphene oxide in biological systems, ensuring its suitability for clinical applications. It calls for further research and filing patents for its translational potential and benefits of this nanotechnology paying the way for a new era in neurodegenerative therapy.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Indranil Sinha; Ambarish Datta; Bijan Mandal;

    The impact of different diesel-ethanol-methanol-butanol (DEMB) blends on the spray and combustion characteristics of a single-cylinder Diesel engine has been investigated. For this study, commercially available software called Diesel-RK that can predict the spray and combustion parameters has been utilized. Some ex-periments have also been conducted using D100 (100% pure diesel by volume) fuel at a fixed speed of 1500 rpm at peak load while maintaining the same operating conditions as the simulation. The predicted results have been validated against the experimental results obtained with D100. The results of the simulation were found to be in reasonably good agreement with those of the experiment. The analysis of the simulated results shows that the heat release rate, ignition delay and peak cyl-inder pressure increase for all quaternary blends, whereas the peak combustion temperature decreases at low load and increases at higher load. In terms of spray characteristics, the investigations show that quaternary alcohol blends shorten spray tip penetration and increase spray cone angle. Furthermore, as the propor-tion of ethanol and methanol in the DEMB blends increases, the atomized fuel droplets become smaller in diameter and the sauter mean diameter of the blends gradually drops. The authors also suggest that the quaternary blends of this pre-sent investigation have a higher potential to be used as a next-generation fuel in Diesel engine.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Sciencearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Thermal Science
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Sciencearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Thermal Science
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Navid, Omidifar; Reza, Masoumzadeh; Seyyed Amirreza, Saghi; Ali, Nikmanesh; +4 Authors

    The importance of early diagnosis of hepatitis B virus infection to treat and follow up this disease has led to many advances in diagnostic techniques and materials. Conventional diagnostic tests are not very useful, especially in the early stages of infection; it is therefore suggested that nanomaterials can enhance them by changing and strengthening their performance for a more accurate and rapid diagnosis. Electrochemical immunosensors with unique features such as miniaturization, low cost, specificity and simplicity have become a suitable and vital tool in the rapid diagnosis of hepatitis B since the patent. Different strategies have been presented, such as graphene oxide and gold nanorods (GO-GNRs), graphene oxide (GO), copper metal–organic framework/ electrochemically reduced graphene oxide (Cu-MOF/ErGO) composite, Label-free graphene oxide/ Fe<sub>3</sub>O<sub>4</sub>/Prussian Blue (GO/Fe<sub>3</sub>O<sub>4</sub>/PB) immunosensor, and graphene oxide–ferrocene-CS/Au (GOFc- CS/Au) nanoparticle layered electrochemical immunosensor. In this review, we discuss a group of the most widely used nanostructures, such as graphene and carbon nanotubes, which are used to develop electrochemical immunosensors for the early diagnosis of the hepatitis B virus.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zimin Jiang; Peng Zhang; Yifan Zhou; Lukasz Kocewiak; +5 Authors

    Synchronous condensers (SCs) play important roles in integrating wind energy into relatively weak power grids. However, the design of SCs usually depends on specific application requirements and may not be adaptive enough to the frequently-changing grid conditions caused by the transition from conventional to renewable power generation. This paper devises a software-defined virtual synchronous condenser (SDViSC) method to address the challenges. Our contributions are fourfold: 1) design of a virtual synchronous condenser (ViSC) to enable full converter wind turbines to provide built-in SC functionalities; 2) engineering SDViSCs to transfer hardware-based ViSC controllers into software services, where a Tustin transformation-based software-defined control algorithm guarantees accurate tracking of fast dynamics under limited communication bandwidth; 3) a software-defined networking-enhanced SDViSC communication scheme to allow enhanced communication reliability and reduced communication bandwidth occupation; and 4) Prototype of SDViSC on our real-time, cyber-in-the-loop digital twin of large-wind-farm in an RTDS environment. Extensive test results validate the excellent performance of SDViSC to support reliable and resilient operations of wind farms under various physical and cyber conditions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    https://dx.doi.org/10.48550/ar...
    Article . 2023
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      https://dx.doi.org/10.48550/ar...
      Article . 2023
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Manjusha Nambiar P.V.; Giridhar Urkude;

    Background: The quality of water directly or indirectly impacts the health and environmental well-being. Data about water quality can be evaluated using a Water Quality Index (WQI). Computing WQI is a quick and affordable technique to accurately summarise the quality of water. Objective: The objective of this study is to find strategies for data preparation to categorize a dataset on the water quality in two remote Indian villages in different geographic locations, to predict the quality of water, and to identify low-quality water before it is made accessible for human consumption. Methods: To accomplish this task, four water quality features Nitrate, pH, Residual Chlorine, and Total Dissolved Solids which are crucial for human consumption, are considered to dictate the quality of water. Methods used in handling these features include five steps that are data preprocessing with min-max normalization, finding WQI, using feature correlation to identify parameter importance with WQI, application of supervised machine learning regression models such as Random Forest (RF), Multiple Linear Regression (MLR), Gradient Boosting (GB) and Support Vector Machine (SVM) for WQI prediction. Then, a variety of machine learning classification models, including K-Nearest Neighbour (KNN), Support Vector Classifier (SVC), and Multi-layer Perceptron (MLP), are ensembled with Logistic Regression (LR), acting as a meta learner, to create a stack ensemble model classifier to predict the Water Quality Class (WQC) more accurately. Results: The examination of the testing model revealed that RF regression and MLR algorithms performed best in predicting the WQI with mean absolute error (MAE) of 0.003 and 0.001 respectively. Mean square error (MSE), root mean square error (RMSE), R squared (R2), and Explained Variance Score (EVS) findings are 0.002,0.005,0.988 and 0.998 respectively with RF while 0.001,0.031,0.999 and 0.999 respectively with MLR. Meanwhile, for predicting WQC, the stack model classifier showed the best performance with an Accuracy of 0.936, F1 score of 0.93, and Matthews Correlation Coefficient (MCC) of 0.893 for the dataset of Lalpura and Accuracy of 0.991, F1 Score of 0.991 and MCC of 0.981 respectively for the dataset of Heingang. Conclusion: This study explores a method for predicting water quality that combines easy and feasible water quality measurements with machine learning. The stack model classifier performed best for multiclass classification, according to this study. To ensure that the highest quality of water is given throughout the year, information from this study will motivate researchers to look into the underlying root causes of the quality variations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Amrita Jyoti; Vikash Yadav; Mayur Rahul;

    : Blockchain technology is increasingly attracting young people because it is so well adapted to the digital age. A decentralised data management system is necessary for the blockchain idea in order to store and share data and transactions throughout the network. This study investigates various types of risks associated with blockchain technology. The research covers different aspects of blockchain, including the architecture, consensus mechanism, smart contracts, and underlying cryptographic algorithms. It also examines the risks associated with the adoption and implementation of blockchain in various industries, such as finance, healthcare, and supply chain management. : Moreover, this study identifies several types of risks, including technical risks, such as scalability, interoperability, and security, as well as non-technical risks, such as regulatory compliance, legal liability, and governance issues. This study also discusses the potential impact of these risks on blockchain-based systems and the strategies that can be used to mitigate them.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
101 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This paper considers the sequential design of remedial control actions in response to system anomalies for the ultimate objective of preventing blackouts. A physics-guided reinforcement learning (RL) framework is designed to identify effective sequences of real-time remedial look-ahead decisions accounting for the long-term impact on the system's stability. The paper considers a space of control actions that involve both discrete-valued transmission line-switching decisions (line reconnections and removals) and continuous-valued generator adjustments. To identify an effective blackout mitigation policy, a physics-guided approach is designed that uses power-flow sensitivity factors associated with the power transmission network to guide the RL exploration during agent training. Comprehensive empirical evaluations using the open-source Grid2Op platform demonstrate the notable advantages of incorporating physical signals into RL decisions, establishing the gains of the proposed physics-guided approach compared to its black box counterparts. One important observation is that strategically~\emph{removing} transmission lines, in conjunction with multiple real-time generator adjustments, often renders effective long-term decisions that are likely to prevent or delay blackouts.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48550/ar...
    Article . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    ResearchGate Data
    Preprint . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48550/ar...
      Article . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      ResearchGate Data
      Preprint . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This study introduces a mixed-integer linear programming (MILP) model, effectively co-optimizing patrolling, damage assessment, fault isolation, repair, and load re-energization processes. The model is designed to solve a vital operational conundrum: deciding between further network exploration to obtain more comprehensive data or addressing the repair of already identified faults. As information on the fault location and repair timelines becomes available, the model allows for dynamic adaptation of crew dispatch decisions. In addition, this study proposes a conservative power flow constraint set that considers two network loading scenarios within the final network configuration. This approach results in the determination of an upper and a lower bound for node voltage levels and an upper bound for power line flows. To underscore the practicality and scalability of the proposed model, we have demonstrated its application using IEEE 123-node and 8500-node test systems, where it delivered promising results.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    https://dx.doi.org/10.48550/ar...
    Article . 2023
    License: CC BY NC SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      https://dx.doi.org/10.48550/ar...
      Article . 2023
      License: CC BY NC SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rustam Khan; Praveen Kumar Agarwal; Swastik Acharya;

    The present work aims to perform a thermoeconomic assessment of a battery pack integrating a novel compact coolant system through which Al2O3, TiO2, CuO, and Cu nanofluids flow at different Reynolds numbers and concentrations. The inlets in the north and west and the outlets in the south and east directions are found to be the best configuration since the least number of batteries exhibits higher temperatures. A nanofluid-based cooling system offers an improvement of 15 K in battery core temperature when compared to the pack without any coolant system at 200 s; however, a reduction of 0.3 K is noticed when compared to water. CuO nanoparticles perform better at a low concentration of 2%, whereas Cu particles have an advantage over other nanoparticles at a concentration greater than 2%. An economic analysis of the nanofluid has also been performed, eradicating the idea of using Cu–water nanofluid in the coolant system owing to its significantly high cost. Though the cost of the CuO and Al2O3 nanofluid is 13 times lower than Cu, using pure water as the coolant is recommended since there is a marginal reduction of 0.1–0.3 K in the battery pack temperature when water is replaced by nanofluid.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: null Pushparaj; Amod Kumar; Garima Saini;

    COVID-19 (Corona Virus Disease of 2019) is a global pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. This disease has significantly impacted every aspect of people's lives, including their work style, leisure activities, and use of technology. Additionally, due to psychological factors or other reasons, there has been a surge in deaths from cardiovascular failure during the pandemic. As COVID-19 is a silent killer whose symptoms only become visible after significant damage has been done, constant monitoring of heart parameters is crucial to address this issue. This paper explores the emerging trends in monitoring vital signs such as the electrocardiogram (ECG), heart rate, respiration rate (breaths), related sensors, remote sensor organization, and telemedicine innovations. Furthermore, this paper discusses the potential application of non-contact radar-based remote monitoring for vital sign monitoring of affected patients.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Dilpreet, Singh; Balak Das, Kurmi; Amrinder, Singh;

    Graphene oxide, a derivative of graphene, has recently emerged as a promising nanomaterial in the biomedical field due to its unique properties. Its potential as a nanocarrier in the treatment of Alzheimer's disease represents a significant advancement. This abstract outlines a study focused on utilizing graphene oxide to reduce the toxicity of Alzheimer's proteins, marking a revolutionary approach in treatment strategies. The pathological features of Alzheimer’s disease, primarily focusing on the accumulation and toxicity of amyloid-beta proteins, have been described in this review. These proteins are known to form plaques in the brain, leading to neuronal damage and the progression of Alzheimer's disease. The current therapeutic strategies and their limitations are briefly reviewed, highlighting the need for innovative approaches. Graphene oxide, with its high surface area, biocompatibility, and ability to cross the blood-brain barrier, is introduced as a novel nanocarrier. The methodology involves functionalizing graphene oxide sheets with specific ligands that target amyloid-beta proteins. This functionalization facilitates the binding and removal of these toxic proteins from the brain, potentially alleviating the symptoms of Alzheimer's disease. Preliminary findings indicate a significant reduction in amyloid-beta toxicity in neuronal cell cultures treated with graphene oxide nanocarriers. The study also explores the biocompatibility and safety profile of graphene oxide in biological systems, ensuring its suitability for clinical applications. It calls for further research and filing patents for its translational potential and benefits of this nanotechnology paying the way for a new era in neurodegenerative therapy.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Indranil Sinha; Ambarish Datta; Bijan Mandal;

    The impact of different diesel-ethanol-methanol-butanol (DEMB) blends on the spray and combustion characteristics of a single-cylinder Diesel engine has been investigated. For this study, commercially available software called Diesel-RK that can predict the spray and combustion parameters has been utilized. Some ex-periments have also been conducted using D100 (100% pure diesel by volume) fuel at a fixed speed of 1500 rpm at peak load while maintaining the same operating conditions as the simulation. The predicted results have been validated against the experimental results obtained with D100. The results of the simulation were found to be in reasonably good agreement with those of the experiment. The analysis of the simulated results shows that the heat release rate, ignition delay and peak cyl-inder pressure increase for all quaternary blends, whereas the peak combustion temperature decreases at low load and increases at higher load. In terms of spray characteristics, the investigations show that quaternary alcohol blends shorten spray tip penetration and increase spray cone angle. Furthermore, as the propor-tion of ethanol and methanol in the DEMB blends increases, the atomized fuel droplets become smaller in diameter and the sauter mean diameter of the blends gradually drops. The authors also suggest that the quaternary blends of this pre-sent investigation have a higher potential to be used as a next-generation fuel in Diesel engine.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Sciencearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Thermal Science
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Sciencearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Thermal Science
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Navid, Omidifar; Reza, Masoumzadeh; Seyyed Amirreza, Saghi; Ali, Nikmanesh; +4 Authors

    The importance of early diagnosis of hepatitis B virus infection to treat and follow up this disease has led to many advances in diagnostic techniques and materials. Conventional diagnostic tests are not very useful, especially in the early stages of infection; it is therefore suggested that nanomaterials can enhance them by changing and strengthening their performance for a more accurate and rapid diagnosis. Electrochemical immunosensors with unique features such as miniaturization, low cost, specificity and simplicity have become a suitable and vital tool in the rapid diagnosis of hepatitis B since the patent. Different strategies have been presented, such as graphene oxide and gold nanorods (GO-GNRs), graphene oxide (GO), copper metal–organic framework/ electrochemically reduced graphene oxide (Cu-MOF/ErGO) composite, Label-free graphene oxide/ Fe<sub>3</sub>O<sub>4</sub>/Prussian Blue (GO/Fe<sub>3</sub>O<sub>4</sub>/PB) immunosensor, and graphene oxide–ferrocene-CS/Au (GOFc- CS/Au) nanoparticle layered electrochemical immunosensor. In this review, we discuss a group of the most widely used nanostructures, such as graphene and carbon nanotubes, which are used to develop electrochemical immunosensors for the early diagnosis of the hepatitis B virus.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zimin Jiang; Peng Zhang; Yifan Zhou; Lukasz Kocewiak; +5 Authors

    Synchronous condensers (SCs) play important roles in integrating wind energy into relatively weak power grids. However, the design of SCs usually depends on specific application requirements and may not be adaptive enough to the frequently-changing grid conditions caused by the transition from conventional to renewable power generation. This paper devises a software-defined virtual synchronous condenser (SDViSC) method to address the challenges. Our contributions are fourfold: 1) design of a virtual synchronous condenser (ViSC) to enable full converter wind turbines to provide built-in SC functionalities; 2) engineering SDViSCs to transfer hardware-based ViSC controllers into software services, where a Tustin transformation-based software-defined control algorithm guarantees accurate tracking of fast dynamics under limited communication bandwidth; 3) a software-defined networking-enhanced SDViSC communication scheme to allow enhanced communication reliability and reduced communication bandwidth occupation; and 4) Prototype of SDViSC on our real-time, cyber-in-the-loop digital twin of large-wind-farm in an RTDS environment. Extensive test results validate the excellent performance of SDViSC to support reliable and resilient operations of wind farms under various physical and cyber conditions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    https://dx.doi.org/10.48550/ar...
    Article . 2023
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      https://dx.doi.org/10.48550/ar...
      Article . 2023
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Manjusha Nambiar P.V.; Giridhar Urkude;

    Background: The quality of water directly or indirectly impacts the health and environmental well-being. Data about water quality can be evaluated using a Water Quality Index (WQI). Computing WQI is a quick and affordable technique to accurately summarise the quality of water. Objective: The objective of this study is to find strategies for data preparation to categorize a dataset on the water quality in two remote Indian villages in different geographic locations, to predict the quality of water, and to identify low-quality water before it is made accessible for human consumption. Methods: To accomplish this task, four water quality features Nitrate, pH, Residual Chlorine, and Total Dissolved Solids which are crucial for human consumption, are considered to dictate the quality of water. Methods used in handling these features include five steps that are data preprocessing with min-max normalization, finding WQI, using feature correlation to identify parameter importance with WQI, application of supervised machine learning regression models such as Random Forest (RF), Multiple Linear Regression (MLR), Gradient Boosting (GB) and Support Vector Machine (SVM) for WQI prediction. Then, a variety of machine learning classification models, including K-Nearest Neighbour (KNN), Support Vector Classifier (SVC), and Multi-layer Perceptron (MLP), are ensembled with Logistic Regression (LR), acting as a meta learner, to create a stack ensemble model classifier to predict the Water Quality Class (WQC) more accurately. Results: The examination of the testing model revealed that RF regression and MLR algorithms performed best in predicting the WQI with mean absolute error (MAE) of 0.003 and 0.001 respectively. Mean square error (MSE), root mean square error (RMSE), R squared (R2), and Explained Variance Score (EVS) findings are 0.002,0.005,0.988 and 0.998 respectively with RF while 0.001,0.031,0.999 and 0.999 respectively with MLR. Meanwhile, for predicting WQC, the stack model classifier showed the best performance with an Accuracy of 0.936, F1 score of 0.93, and Matthews Correlation Coefficient (MCC) of 0.893 for the dataset of Lalpura and Accuracy of 0.991, F1 Score of 0.991 and MCC of 0.981 respectively for the dataset of Heingang. Conclusion: This study explores a method for predicting water quality that combines easy and feasible water quality measurements with machine learning. The stack model classifier performed best for multiclass classification, according to this study. To ensure that the highest quality of water is given throughout the year, information from this study will motivate researchers to look into the underlying root causes of the quality variations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Amrita Jyoti; Vikash Yadav; Mayur Rahul;

    : Blockchain technology is increasingly attracting young people because it is so well adapted to the digital age. A decentralised data management system is necessary for the blockchain idea in order to store and share data and transactions throughout the network. This study investigates various types of risks associated with blockchain technology. The research covers different aspects of blockchain, including the architecture, consensus mechanism, smart contracts, and underlying cryptographic algorithms. It also examines the risks associated with the adoption and implementation of blockchain in various industries, such as finance, healthcare, and supply chain management. : Moreover, this study identifies several types of risks, including technical risks, such as scalability, interoperability, and security, as well as non-technical risks, such as regulatory compliance, legal liability, and governance issues. This study also discusses the potential impact of these risks on blockchain-based systems and the strategies that can be used to mitigate them.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph