Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
60,935 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 12. Responsible consumption
  • 6. Clean water
  • US
  • IN
  • DE

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Iman Mallakpour;
    Iman Mallakpour
    ORCID
    Harvested from ORCID Public Data File

    Iman Mallakpour in OpenAIRE
    Mojtaba Sadegh; orcid Amir AghaKouchak;
    Amir AghaKouchak
    ORCID
    Harvested from ORCID Public Data File

    Amir AghaKouchak in OpenAIRE

    Abstract Levee systems are an important part of California’s water infrastructure, engineered to provide resilience against flooding and reduce flood losses. The growth in California is partly associated with costly infrastructure developments that led to population expansion in the levee protected areas. Therefore, potential changes in the flood hazard could have significant socioeconomic consequences over levee protected areas, especially in the face of a changing climate. In this study, we examine the possible impacts of a warming climate on flood hazard over levee protected land in California. We use gridded maximum daily runoff from global circulation models (GCMs) that represent a wide range of variability among the climate projections, and are recommended by the California’s Fourth Climate Change Assessment Report, to investigate possible climate-induced changes. We also quantify the exposure of several critical infrastructure protected by the levee systems (e.g. roads, electric power transmission lines, natural gas pipelines, petroleum pipelines, and railroads) to flooding. Our results provide a detailed picture of change in flood risk for different levees and the potential societal consequences (e.g. exposure of people and critical infrastructure). Levee systems in the northern part of the Central Valley and coastal counties of Southern California are likely to observe the highest increase in flood hazard relative to the past. The most evident change is projected for the northern region of the Central Valley, including Butte, Glenn, Yuba, Sutter, Sacramento, and San Joaquin counties. In the leveed regions of these counties, based on the model simulations of the future, the historical 100-year runoff can potentially increase up to threefold under RCP8.5. We argue that levee operation and maintenance along with emergency preparation plans should take into account the changes in frequencies and intensities of flood hazard in a changing climate to ensure safety of levee systems and their protected infrastructure.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Research Letters
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Research Letters
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Research Letters
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Research Letters
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Research Letters
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Research Letters
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Food Scie...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Food Science and Technology
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Food Scie...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Food Science and Technology
      Article . 2013 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Rajender S. Sangwan;
    Rajender S. Sangwan
    ORCID
    Harvested from ORCID Public Data File

    Rajender S. Sangwan in OpenAIRE
    orcid Sushil Kumar Kansal;
    Sushil Kumar Kansal
    ORCID
    Harvested from ORCID Public Data File

    Sushil Kumar Kansal in OpenAIRE
    Sandeep Kumar; Pranati Kundu; +3 Authors

    In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: Tanaka, Amanda Mayumi;

    As the concern with global warming increases causing the need for CO2 reduction, renewable energy is of great interest as it has lower carbon footprint when compared to conventional sources (natural gas, coal, oil and nuclear). Solar energy has been drawing worldwide attention since it can transform sunlight directly into electricity with the use of photovoltaic (PV) cells. However, this technology has some drawbacks that need to be addressed including dust deposition on solar panels, also known as soiling. Soiling can decrease PV panel's efficiency thereby resulting in less energy production. The soiling rates are very site specific and depend on the geographic location of the panels and the climate in that area. The solar panels can be cleaned naturally (by rainfall, snow or wind) or mechanically washed. This thesis addresses the impact of solar panel soiling and washing on the energy production of solar PV plants located at the UNLV campus. The objectives of this project were (a) to evaluate whether rainfall alone, in the desert environment with low rainfall, is sufficient to clean up the solar panels, and, if possible, determine the minimum amount of rainfall necessary to clean up panels.; (b) to examine the efficiency loss caused by soiling using different methods of analyses and (c) to evaluate if panel washing is worthwhile given the cost and the efficiency gain that is obtained by washing. To calculate the efficiency of the panels, a model was developed to generate parameters that were not measured at the site. Panel efficiencies before and after rainfall events were compared to determine the minimum amount of rain necessary to clean the panels. It was found that at least 0.2 inches of rain was needed to partially restore clean-panel efficiency. In Las Vegas, the recurrence periods of different depths rainfall were calculated using data from the past 29 years. It was observed that the 50th percentile recurrence period of a rainfall event with depth of 0.2 inches or higher was approximately 52 days. Student Union: -0.0044%/day, CBC-C: -0.00099%/day, and Dayton Hall: -0.0034%/day The amount of efficiency lost during the dry intervals (periods between rainfall events) was analyzed in three different ways. The average efficiency loss per day during the dry periods varied from -0.000171 % to -0.00533 %, depending on the method used and the building where the panels were located. However, there were some limitations to the calculations. It was not possible to completely isolate the effects of only soiling on the efficiency of the panels. The rate of decline seemed to be also impacted by seasonal effects. To better evaluate the effect of washing, a professional company was hired to wash a set of solar panels located on UNLV's Student Union building. The panels were washed with water with a low concentration of TDS. The power output and the efficiency of those panels were analyzed from before and after the washing. There was a very small efficiency and power increase due to the washing. Therefore, it was concluded that washing in this area is not worthwhile, and that rainfall events in excess of 0.2 inches can adequately restore the efficiency of the panels. If there is a change in cost of energy, washing, water or a great increase in the efficiency of the solar panels, it would be necessary to reevaluate the analysis.

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Arindam Dutta;
    Arindam Dutta
    ORCID
    Harvested from ORCID Public Data File

    Arindam Dutta in OpenAIRE
    Akash Samanta;

    Abstract The main hindrances to the large-scale development of renewable-energy projects are the lack of bankability and the inability to align investments and investors with suitable financial instruments or robust policy measures. To illustrate a bankable project, this paper presents a research-based case study on the installation of solar photovoltaic panels on the rooftops of 195 trains of the Indian Railways. Detailed information on the annual running hours, exposure to sunlight, efficiency of solar photovoltaic generation and electrical power demands of each rail coach is considered to conduct a quantitative measure of the tentative amount of fossil fuel savings. The purpose is to provide insight into the types of renewable-energy projects that can be highly attractive to financial institutions and promoters due to their lucrative internal return on investment. As seen in this case study, there are annual savings in diesel of 12 323 088 litres and a CO2 reduction of 32 755 tonnes, with return on investment of 1.3 years. Furthermore, this study conducts a comprehensive analysis of the limitations of existing renewable-energy project financing mechanisms in India. Subsequently, three policy measures are recommended to develop a robust financial mechanism that can effectively meet the needs of investors and investors. These measures include increasing equity injection through a buy-and-hold strategy, providing direct tax benefits to promoters and financing through real-estate investment trusts. The findings are highly relevant to address the challenges associated with bridging the financial gap between access to finance and capital investment in the renewable-energy sector, especially for Asian countries.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clean Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Clean Energy
    Article . 2023 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clean Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Clean Energy
      Article . 2023 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kelly Klima; orcid bw Meghan Doherty;
    Meghan Doherty
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Meghan Doherty in OpenAIRE
    Jessica J. Hellmann; Jessica J. Hellmann;

    AbstractClimate change poses new and unique challenges that threaten lives and livelihoods. Given the increasing risks and looming uncertainty of climate change, increasing attention has been directed towards adaptation, or the strategies that enable humanity to persist and thrive through climate change the best it can. Though climate change is a global problem often discussed at the national scale, urban areas are increasingly seen as having a distinct role, and distinctive motivation and capacity, for adaptation. The 12 articles in this special issue explore ways of understanding and addressing climate change impacts on urban areas. Together they reveal young but rapidly growing scholarship on how to measure, and then overcome, challenges of climate change. Two key themes emerge in this issue: 1) that we must identify and then overcome current barriers to urban adaptation and 2) frameworks/metrics are necessary to identify and track adaptation progress in urban settings. Both of these themes point to the power of indicators and other quantitative information to inform priorities and illuminate the pathway forward for adaptation. As climate change is an entirely new challenge, careful measurement that enables investment by private and public parties is necessary to provide efficient outcomes that benefit the greatest number of people.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Scienc...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science & Policy
    Article . 2016 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science & Policy
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science & Policy
    Article . 2016
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Scienc...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Science & Policy
      Article . 2016 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Science & Policy
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Science & Policy
      Article . 2016
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • Authors: Lei Yang; orcid Zhonghua Tang;
    Zhonghua Tang
    ORCID
    Harvested from ORCID Public Data File

    Zhonghua Tang in OpenAIRE
    Yuangang Zu; Wei-Wei Cong; +1 Authors

    The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth.

    addClaim
    88
    citations88
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laadila, Mohamed Amine; orcid Suresh, Gayatri;
    Suresh, Gayatri
    ORCID
    Harvested from ORCID Public Data File

    Suresh, Gayatri in OpenAIRE
    orcid Rouissi, Tarek;
    Rouissi, Tarek
    ORCID
    Harvested from ORCID Public Data File

    Rouissi, Tarek in OpenAIRE
    Kumar, Pratik; +5 Authors

    Recycled polylactic acid (PLAr) was reinforced with treated nanocellulosic hemp fibers for biocomposite fabrication. Cellulosic fibers were extracted from hemp fibers chemically and treated enzymatically. Treated nanocellulosic fibers (NCF) were analyzed by Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Biocomposite fabrication was done with PLAr and three concentrations of treated NCF (0.1%, 0.25%, and 1% (v/v)) and then studied for thermal stability and mechanical properties. Increased thermal stability was observed with increasing NCF concentrations. The highest value for Young’s modulus was for PLAr + 0.25% (v/v) NCF (250.28 ± 5.47 MPa), which was significantly increased compared to PLAr (p = 0.022). There was a significant decrease in the tensile stress at break point for PLAr + 0.25% (v/v) NCF and PLAr + 1% (v/v) NCF as compared to control (p = 0.006 and 0.002, respectively). No significant difference was observed between treatments for tensile stress at yield.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zia Ud Din;
    Zia Ud Din
    ORCID
    Harvested from ORCID Public Data File

    Zia Ud Din in OpenAIRE
    Zia Ud Din; orcid Zainal Alimuddin Zainal;
    Zainal Alimuddin Zainal
    ORCID
    Harvested from ORCID Public Data File

    Zainal Alimuddin Zainal in OpenAIRE

    Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    187
    citations187
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Arizona; Carefree; Mother Earth Industries;

    The Sulphurdale Geothermal Field is located in Beaver County Utah, within the boundaries of the Cove Fort--Sulphurdale Known Geothermal Resource Area (KGRA). During the past year, three wells drilled in Section 7, T-26-S, R-6-W, have produced dry steam from a fractured volcanic formation located at a depth of about 1100 feet. Two of these three wells are currently prepared to supply steam to a power plant, and one well has been plugged and abandoned. ThermaSource, Inc. was retained by Mother Earth Industries, the operator of the field, to conduct well tests and render an opinion as to the nature of the geothermal reserves and assess the commercial potential of these reserves. Because of the limited area that has been explored to date, there can be no assurance that the reserves estimate will prove accurate. Project economics are based on parameters believed to be accurate, but there is no assurance that such cash flow projections will be realized.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph