- home
- Advanced Search
- Energy Research
- US
- IR
- AU
- Energy
- Energy Research
- US
- IR
- AU
- Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: Nasvi, M. C. M.; Ranjith, P. G.; Sanjayan, J.; Haque, A.;handle: 1959.3/312506
Abstract Carbon capture and storage has attracted attention as a feasible solution to global warming caused by anthropogenic emissions of greenhouse gases. The injection wells and well cement provide the wellbore integrity necessary for the long-term storage of carbon dioxide (CO 2 ). To date, ordinary Portland cement (OPC) has been used in injection wells, and its survival has been questioned as it is unstable in CO 2 -rich environments. Therefore, an experimental study was conducted to study geopolymer (G) as well cement and sandstone (S) as formation material. The sub- and super-critical CO 2 permeability of geopolymer, sandstone and G–S composites were studied using the high pressure triaxial set-up in the Department of Civil Engineering, Monash University. The undrained triaxial experiment was conducted at confining pressures from 14 to 26 MPa, and inlet pressures from 6 to 20 MPa to study the sub- and super-critical CO 2 permeability of wellbore materials. Based on the experimental results, the apparent CO 2 permeability of sandstone (0.8–30 μD) is approx. 1000 times higher than that of geopolymer (0.002–0.02 μD). The increase in pore pressure reduces the permeability of geopolymer, sandstone and G–S composite materials, and this is related to Klinkenberg's slip flow. In addition, the apparent permeability of CO 2 reduces due to pore volume shrinkage caused by the increase in confining pressure. The percentage permeability reduction (per 1 MPa increase in downstream pressure) of geopolymer, sandstone and G–S composite materials reduces with increase in pore pressure, and the reduction is significant from sub-critical to super-critical CO 2 pressure conditions. This observation shows the significance of super-critical CO 2 pressure conditions for effective and leak-free storage of CO 2 in deep underground reservoirs.
Energy arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.01.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.01.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Noel D. Uri; Roy Boyd;Abstract This paper uses an aggregate modelling approach to assess the impact of taxes on refined petroleum products on the Philippine economy. The effects of removing the 48% tax on premium and regular gasoline and the 24% tax on other refined petroleum products on prices and quantities are examined. For example, the consequences of a complete elimination of refined petroleum product taxes would be an increase in output by all producing sectors of about 3.7% or about 2.65 hundred billion Philippine pesos, a rise in the consumption of goods and services by about 13.6% or 4.2 hundred billion Philippine pesos, a rise in lower tax revenue for the government of 62.4% or 2.8 hundred billion Philippine pesos. When subjected to sensitivity analyses, the results are reasonably robust.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90077-q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90077-q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981Publisher:Elsevier BV Authors: W.E. Mooz;Abstract A statistical analysis of light water reactor power plant capital costs that uses a data base that is larger and of higher quality than that used in a previous study. The data span six years, and include virtually all U.S. LWR power plants presently in commercial operation. During this period average capital costs increased at the rate of about $140/k We (1978 dollars) per year, and average construction time increased at the rate of about 4 months per year. Significant economies of scale, either in construction time or capital cost, were not detected. Other findings were that plants built in the Northeast continued to show higher average costs than those in the rest of the country, the experience of the architect-engineer is a factor in reducing costs, and the costs of plants with cooling towers could not be distinguished from those without.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(81)90046-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(81)90046-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Basma, Hussein; Mansour, Charbel; Haddad, Marc; Nemer, Maroun; Stabat, Pascal;International audience
Energy arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lingling Li; Congbo Li; Li Li; Ying Tang; Qinge Xiao;Abstract Selection of optimum process parameters is often regarded as an effective strategy for improving energy efficiency during computer numerical control (CNC) turning. Previous optimization methods are typically developed for specific machining configurations. To generalize the energy-aware parametric optimization for multiple machining configurations, we propose a two-stage knowledge-driven method by integrating data mining (DM) techniques and fuzzy logic theory. In the first stage, a modified association rule mining algorithm is developed to discover empirical knowledge, based on which a fuzzy inference engine is established to achieve preliminary optimization. In the second stage, with the knowledge obtained by investigating the effects of parameters on specific energy consumption covering a variety of configurations, an iterative fine-tuning is carried out to realize Pareto-optimization of turning parameters for minimizing specific energy consumption and processing time. The simulation results show that the method has a high potential for enhancing energy efficiency and time efficiency in turning system. Furthermore, compared with three heuristic optimization techniques, i.e. Genetic Algorithm, Ant Colony Algorithm and Particle Swarm Algorithm, the proposed method demonstrates certain superiority.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.09.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.09.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1980Publisher:Elsevier BV Authors: Thomas P. Bligh; Paul Shipp; George D. Meixel;Abstract Earth-sheltered buildings use dramatically less energy than conventional designs, as is shown by a computer study of single and two storey residences. Various insulating techniques are discussed for windows, and for roofs, walls, and floors of earth-sheltered houses and for basements of conventional houses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(80)90020-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(80)90020-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: V. Zare;Abstract The reliability and availability considerations are introduced in the exergoeconomic investigation of a combined cycle power plant in which an organic Rankine cycle is employed to recover the waste heat from a GT-MHR (Gas Turbine Modular Helium Reactor) power plant. The SPECO (specific exergy costing) theory is employed to investigate the exergoeconomic performance of the system and assess the specific cost of the output power. For the reliability analysis, however, the SSM (state-space method) along with the probabilistic analysis of Markov processes is employed. After conducting a parametric analysis, the performance of the cycle is optimized with respect to the specific cost of output power, with and without reliability considerations. The effects of the system failure and repair rates are examined on the cost of power and availability of the combined cycle by the sensitivity analysis. The optimization results show that, the specific cost of output power for the combined cycle is around 12% lower than that for the stand alone GT-MHR. However, availability of the combined cycle is lower than that of the GT-MHR as the former has more components and a complicated system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.12.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.12.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Shuang Liang; Feiqiang Guo; Feiqiang Guo; Kuangye Peng; Xiaopeng Jia; Xiaochen Jiang; Lin Qian; Xingmin Zhao;Abstract In this work, the possibility of steel slag as an effective and low-cost catalyst for the decomposition of biomass pyrolysis tar has been explored based on the high content of iron oxides for sustainable syngas production from biomass. By simple calcination treatment at 800 °C, the loose structure of the steel slag was formed with the main chemical composition of Fe2O3 and MgFe2O4. The steel slag exhibited good catalytic activity on the cracking of biomass pyrolysis tar, and even higher tar conversion efficiency can be obtained by reusing the steel slag, leading to the increase in syngas yield. The presence of additional steam can further promote the tar reforming reactions, leading to the significant increase in H2 and CO. At 800 °C, the tar conversion efficiency reached 94.1% with a high gas yield of 493.5 mL/g. The interaction between steel slag and reductive gases resulted in the reduction of iron oxides into Fe3O4, and more pores were formed for the spent steel slag, which can enhance the contact between active sites and reactants. These characteristics indicate that steel slag has the potential to be used as an efficient catalyst with excellent stability in the long-term biomass tar removal applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 United StatesPublisher:Elsevier BV Authors: Donlee Technologies, Inc. North Hills Road, York, PA 17402, USA ( host institution ); Xu, Feng ( author ); Goswami, D.Yogi ( author );Abstract Ammonia–water mixtures have been used as working fluids in absorption–refrigeration cycles for several decades. Their use as multi-component working fluids for power cycles has been investigated recently. The thermodynamic properties required are known or may be calculated at elevated temperatures and pressures. We present a new method for these computations using Gibbs free energies and empirical equations for bubble and dew point temperature to calculate phase equilibria. Comparisons of calculated and experimental data show excellent agreement.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 1999License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00519132/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(99)00007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 139 citations 139 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 1999License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00519132/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(99)00007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Natarianto Indrawan; Sunil Thapa; Prakashbhai R. Bhoi; Raymond L. Huhnke; Ajay Kumar;Abstract Global generation of municipal solid waste (MSW) is predicted to reach over 2.2 billion tons/year in 2025. Landfilling and incineration, the two most common conventional techniques for MSW processing, negatively impact public health. This study developed and demonstrated electricity generation by co-gasification of two underutilized resources: MSW and agricultural biomass. A patented design of 60-kW downdraft gasifier and an internal combustion engine with 10 kW generator were used to generate electricity from co-gasification of various ratios of MSW and biomass. The maximum heating values (LHV) of syngas obtained at MSW ratio of 0, 20, and 40 wt.% were 6.91, 7.74, and 6.78 MJ/Nm3, respectively. At all MSW to biomass ratios, the maximum electric load generated was 5 kW, with electrical efficiencies of 22, 20, and 19.5% at MSW ratios of 0, 20, and 40 wt.%, respectively. The engine CO, NOx, SO2, and CO2 emission decreased with increasing load, while HC emission increased with increasing load. CO, NOx, and CO2 emissions decreased, while HC and SO2 emissions increased with increase in MSW ratio. Thus, the co-gasification system provides a basis for future development of small-scale power generation to utilize local wastes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: Nasvi, M. C. M.; Ranjith, P. G.; Sanjayan, J.; Haque, A.;handle: 1959.3/312506
Abstract Carbon capture and storage has attracted attention as a feasible solution to global warming caused by anthropogenic emissions of greenhouse gases. The injection wells and well cement provide the wellbore integrity necessary for the long-term storage of carbon dioxide (CO 2 ). To date, ordinary Portland cement (OPC) has been used in injection wells, and its survival has been questioned as it is unstable in CO 2 -rich environments. Therefore, an experimental study was conducted to study geopolymer (G) as well cement and sandstone (S) as formation material. The sub- and super-critical CO 2 permeability of geopolymer, sandstone and G–S composites were studied using the high pressure triaxial set-up in the Department of Civil Engineering, Monash University. The undrained triaxial experiment was conducted at confining pressures from 14 to 26 MPa, and inlet pressures from 6 to 20 MPa to study the sub- and super-critical CO 2 permeability of wellbore materials. Based on the experimental results, the apparent CO 2 permeability of sandstone (0.8–30 μD) is approx. 1000 times higher than that of geopolymer (0.002–0.02 μD). The increase in pore pressure reduces the permeability of geopolymer, sandstone and G–S composite materials, and this is related to Klinkenberg's slip flow. In addition, the apparent permeability of CO 2 reduces due to pore volume shrinkage caused by the increase in confining pressure. The percentage permeability reduction (per 1 MPa increase in downstream pressure) of geopolymer, sandstone and G–S composite materials reduces with increase in pore pressure, and the reduction is significant from sub-critical to super-critical CO 2 pressure conditions. This observation shows the significance of super-critical CO 2 pressure conditions for effective and leak-free storage of CO 2 in deep underground reservoirs.
Energy arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.01.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.01.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Noel D. Uri; Roy Boyd;Abstract This paper uses an aggregate modelling approach to assess the impact of taxes on refined petroleum products on the Philippine economy. The effects of removing the 48% tax on premium and regular gasoline and the 24% tax on other refined petroleum products on prices and quantities are examined. For example, the consequences of a complete elimination of refined petroleum product taxes would be an increase in output by all producing sectors of about 3.7% or about 2.65 hundred billion Philippine pesos, a rise in the consumption of goods and services by about 13.6% or 4.2 hundred billion Philippine pesos, a rise in lower tax revenue for the government of 62.4% or 2.8 hundred billion Philippine pesos. When subjected to sensitivity analyses, the results are reasonably robust.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90077-q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90077-q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981Publisher:Elsevier BV Authors: W.E. Mooz;Abstract A statistical analysis of light water reactor power plant capital costs that uses a data base that is larger and of higher quality than that used in a previous study. The data span six years, and include virtually all U.S. LWR power plants presently in commercial operation. During this period average capital costs increased at the rate of about $140/k We (1978 dollars) per year, and average construction time increased at the rate of about 4 months per year. Significant economies of scale, either in construction time or capital cost, were not detected. Other findings were that plants built in the Northeast continued to show higher average costs than those in the rest of the country, the experience of the architect-engineer is a factor in reducing costs, and the costs of plants with cooling towers could not be distinguished from those without.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(81)90046-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(81)90046-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Basma, Hussein; Mansour, Charbel; Haddad, Marc; Nemer, Maroun; Stabat, Pascal;International audience
Energy arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lingling Li; Congbo Li; Li Li; Ying Tang; Qinge Xiao;Abstract Selection of optimum process parameters is often regarded as an effective strategy for improving energy efficiency during computer numerical control (CNC) turning. Previous optimization methods are typically developed for specific machining configurations. To generalize the energy-aware parametric optimization for multiple machining configurations, we propose a two-stage knowledge-driven method by integrating data mining (DM) techniques and fuzzy logic theory. In the first stage, a modified association rule mining algorithm is developed to discover empirical knowledge, based on which a fuzzy inference engine is established to achieve preliminary optimization. In the second stage, with the knowledge obtained by investigating the effects of parameters on specific energy consumption covering a variety of configurations, an iterative fine-tuning is carried out to realize Pareto-optimization of turning parameters for minimizing specific energy consumption and processing time. The simulation results show that the method has a high potential for enhancing energy efficiency and time efficiency in turning system. Furthermore, compared with three heuristic optimization techniques, i.e. Genetic Algorithm, Ant Colony Algorithm and Particle Swarm Algorithm, the proposed method demonstrates certain superiority.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.09.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.09.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1980Publisher:Elsevier BV Authors: Thomas P. Bligh; Paul Shipp; George D. Meixel;Abstract Earth-sheltered buildings use dramatically less energy than conventional designs, as is shown by a computer study of single and two storey residences. Various insulating techniques are discussed for windows, and for roofs, walls, and floors of earth-sheltered houses and for basements of conventional houses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(80)90020-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(80)90020-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: V. Zare;Abstract The reliability and availability considerations are introduced in the exergoeconomic investigation of a combined cycle power plant in which an organic Rankine cycle is employed to recover the waste heat from a GT-MHR (Gas Turbine Modular Helium Reactor) power plant. The SPECO (specific exergy costing) theory is employed to investigate the exergoeconomic performance of the system and assess the specific cost of the output power. For the reliability analysis, however, the SSM (state-space method) along with the probabilistic analysis of Markov processes is employed. After conducting a parametric analysis, the performance of the cycle is optimized with respect to the specific cost of output power, with and without reliability considerations. The effects of the system failure and repair rates are examined on the cost of power and availability of the combined cycle by the sensitivity analysis. The optimization results show that, the specific cost of output power for the combined cycle is around 12% lower than that for the stand alone GT-MHR. However, availability of the combined cycle is lower than that of the GT-MHR as the former has more components and a complicated system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.12.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.12.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Shuang Liang; Feiqiang Guo; Feiqiang Guo; Kuangye Peng; Xiaopeng Jia; Xiaochen Jiang; Lin Qian; Xingmin Zhao;Abstract In this work, the possibility of steel slag as an effective and low-cost catalyst for the decomposition of biomass pyrolysis tar has been explored based on the high content of iron oxides for sustainable syngas production from biomass. By simple calcination treatment at 800 °C, the loose structure of the steel slag was formed with the main chemical composition of Fe2O3 and MgFe2O4. The steel slag exhibited good catalytic activity on the cracking of biomass pyrolysis tar, and even higher tar conversion efficiency can be obtained by reusing the steel slag, leading to the increase in syngas yield. The presence of additional steam can further promote the tar reforming reactions, leading to the significant increase in H2 and CO. At 800 °C, the tar conversion efficiency reached 94.1% with a high gas yield of 493.5 mL/g. The interaction between steel slag and reductive gases resulted in the reduction of iron oxides into Fe3O4, and more pores were formed for the spent steel slag, which can enhance the contact between active sites and reactants. These characteristics indicate that steel slag has the potential to be used as an efficient catalyst with excellent stability in the long-term biomass tar removal applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 United StatesPublisher:Elsevier BV Authors: Donlee Technologies, Inc. North Hills Road, York, PA 17402, USA ( host institution ); Xu, Feng ( author ); Goswami, D.Yogi ( author );Abstract Ammonia–water mixtures have been used as working fluids in absorption–refrigeration cycles for several decades. Their use as multi-component working fluids for power cycles has been investigated recently. The thermodynamic properties required are known or may be calculated at elevated temperatures and pressures. We present a new method for these computations using Gibbs free energies and empirical equations for bubble and dew point temperature to calculate phase equilibria. Comparisons of calculated and experimental data show excellent agreement.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 1999License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00519132/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(99)00007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 139 citations 139 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 1999License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00519132/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(99)00007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Natarianto Indrawan; Sunil Thapa; Prakashbhai R. Bhoi; Raymond L. Huhnke; Ajay Kumar;Abstract Global generation of municipal solid waste (MSW) is predicted to reach over 2.2 billion tons/year in 2025. Landfilling and incineration, the two most common conventional techniques for MSW processing, negatively impact public health. This study developed and demonstrated electricity generation by co-gasification of two underutilized resources: MSW and agricultural biomass. A patented design of 60-kW downdraft gasifier and an internal combustion engine with 10 kW generator were used to generate electricity from co-gasification of various ratios of MSW and biomass. The maximum heating values (LHV) of syngas obtained at MSW ratio of 0, 20, and 40 wt.% were 6.91, 7.74, and 6.78 MJ/Nm3, respectively. At all MSW to biomass ratios, the maximum electric load generated was 5 kW, with electrical efficiencies of 22, 20, and 19.5% at MSW ratios of 0, 20, and 40 wt.%, respectively. The engine CO, NOx, SO2, and CO2 emission decreased with increasing load, while HC emission increased with increasing load. CO, NOx, and CO2 emissions decreased, while HC and SO2 emissions increased with increase in MSW ratio. Thus, the co-gasification system provides a basis for future development of small-scale power generation to utilize local wastes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu