- home
- Advanced Search
- Energy Research
- engineering and technology
- 15. Life on land
- US
- IT
- FR
- Energy Research
- engineering and technology
- 15. Life on land
- US
- IT
- FR
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: SCARPA, MASSIMILIANO; MAZZALI, UGO; PERON, FABIO;handle: 11578/217904
Abstract In recent years living walls have increasingly spread, thus becoming a diffuse architectural envelope cladding technology. Consequently, a more precise understanding of their thermal behavior and impact on the building energy balance are needed. One of the most important effects provided by the use of living walls is the shading of the building envelope, with clear benefits during the cooling period. Furthermore, many features characterize the thermal behavior of living walls, namely plant species, leaf area index (LAI), evapotranspiration, emissivity and air cavity type. All these particular characteristics have been accounted in the mathematical model developed in the frame of the presented research, whose aim is to provide a tool for the prediction of the thermal behavior of living walls. Two kinds of living walls, one with grass and closed air cavity and the other one with vertical garden and open air cavity were considered. The results achieved by means of the developed model show a good agreement with the measurements also supported by model efficiency indexes such as Nash–Sutcliffe efficiency index (NSEC). Values of around 0.7 were obtained for the NSEC index for both the investigated living walls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Kazi Masel Ullah; Puneet Dwivedi;doi: 10.1111/gcbb.12945
AbstractThe adoption of a bioenergy crop is affected by various factors, including but not limited to the characteristics of farmers, farm economics, market forces, and physical environment. This study develops a spatially explicit agent‐based model for ascertaining the adoption rate of carinata (Brassica carinata) among the farmers in the Little River Experimental Watershed located in the southern state of Georgia in the United States. Each farmer's adoption behavior is modeled using the profitability difference between traditional crop rotations (with and without carinata at different contract prices), the adoption rate of neighboring farmers, and their land allocation decisions from managing a risky portfolio of enterprises. Carinata production in the winter season once every 3 years has no conflict with the most profitable and popular traditional row crop rotations, such as cotton‐cotton‐cotton and cotton‐cotton‐peanut, to a larger extent. The results show that 28% and 85% of farmers in the watershed will adopt carinata after 33 years at a contract price of $13/bushel (bu) under two different assumptions of low (2.5%) and high (5%) initial neighborhood adoption rates. The proportions of land allocated to carinata to the total farmland under field crops are 38% and 85% after 33 years under the same low and high neighborhood adoption rates, respectively. Our results suggest that fixing the appropriate contract price of carinata will bring additional profits to farmers without any significant foreseeable agronomic risks, thereby increasing the adoption rate of carinata at a regional level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:MDPI AG Authors: Godfred Addai; Matthew Abunyewah; Michael Odei Erdiaw-Kwasie; Seth Asare Okyere; +2 AuthorsGodfred Addai; Matthew Abunyewah; Michael Odei Erdiaw-Kwasie; Seth Asare Okyere; Michael Asiedu Gyensare; Lawrence Guodaar;doi: 10.3390/su15054239
In recent years, sustainability concerns have gained increasing attention among countries and stakeholders worldwide. Towards the transition to sustainable rural development, the rural web framework (RWF) has become a consistent tool. Indicators from the RWF have been used to explore sustainable rural development for decision-making tasks, which improves the social, economic, and environmental performance of rural regions. However, the application of the RWF in studies is on the decline. Furthermore, there is a lack of literature reviews on the importance of the RWF and its relationship with different facets of sustainable development. We conducted a systematic literature review (SLR) (a) to explore how studies have used the RWF in the context of sustainable development and (b) to identify areas for further research. This study found that the RWF has mostly been used in developed countries, with fewer applications in developing countries. We suggest that there should be increased application of the RWF, particularly in developing countries, to broaden the rural web–sustainable development discourse and its relevance. This paper presents several areas where the indicators of the RWF can be applied to illustrate their relevance for policy decisions towards the achievement of the sustainable development goals (SDGs).
Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2122Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2122Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Springer Science and Business Media LLC Authors: Janine Bloomfield; Holly Pearson;Activities involving land use, land-use change,forestry, and agriculture (LUCF) can help reducegreenhouse gas (GHG) concentrations in the atmosphereby increasing biotic carbon storage, by decreasing GHGemissions, and by producing biomass as a substitutefor fossil fuels. Potential activities includereducing rates of deforestation, increasing landdevoted to forest plantations, regenerating secondaryforest, agroforestry, improving the management offorests and agricultural areas; and producing energycrops.Policymakers debating the inclusion of a variety ofLUCF activities in the Clean Development Mechanism(CDM) of the Kyoto Protocol need to consider themagnitude of the carbon contribution these activitiescould make. Existing estimates of the cumulative GHGoffset potential of LUCF activities often take aglobal or regional approach. In contrast, land-usedecisions are usually made at the local level anddepend on many factors including productive capacityof the land, financial considerations of thelandowner, and environmental concerns. Estimates ofGHG offset potential made at a local, or at mostcountry, level that incorporate these factors may belower, as well as more useful for policy analyses,than global or large regional estimates. Whilecountry-level estimates exist for forestry activities,similar estimates utilizing local information need tobe generated for agricultural activities and biofuels,as well as for the cumulative potential of all LUCFactivities in a particular location.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Authors: Helen Young; Musa Adam Ismail;Darfur farming and pastoralist livelihoods are both adaptations to the environmental variability that characterises the region. This article describes this adaptation and the longer‐term transformation of these specialised livelihoods from the perspective of local communities. Over several decades farmers and herders have experienced a continuous stream of climate, conflict and other shocks, which, combined with wider processes of change, have transformed livelihoods and undermined livelihood institutions. Their well‐rehearsed specialist strategies are now combined with new strategies to cope. These responses help people get by in the short term but risk antagonising not only their specialist strategies but also those of others. A combination of factors has undermined the former integration between farming and pastoralism and their livelihood institutions. Efforts to build resilience in similar contexts must take a long‐term view of livelihood adaptation as a specialisation, and consider the implications of new strategies for the continuity and integration of livelihood specialisations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/disa.12337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/disa.12337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | LUC4CEC| LUC4CAuthors: R. Alkama; A. Cescatti;pmid: 26912702
It's not only the carbon in the trees Forest loss affects climate not just because of the impacts it has on the carbon cycle, but also because of how it affects the fluxes of energy and water between the land and the atmosphere. Evaluating global impact is complicated because deforestation can produce different results in different climate zones, making it hard to determine large-scale trends rather than more local ones. Alkama and Cescatti conducted a global assessment of the biophysical effects of forest cover change. Forest loss amplifies diurnal temperature variations, increases mean and maximum air temperatures, and causes a significant amount of warming when compared to CO 2 emission from land-use change. Science , this issue p. 600
Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu639 citations 639 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Mariusz Ptak; Mariusz Sojka; Adam Choiński; Bogumił Nowak;doi: 10.3390/w10050580
The study evaluated the effect of environmental conditions and morphometric parameters on lake water temperature changes. The analysis was carried out on the basis of 14 lakes located in northern Poland. The assessment was based on the daily water and air temperatures from 1972 to 2016. It took into account the location of lakes (latitude, longitude, altitude) morphometric parameters (surface area, maximum and mean depth, volume), hydrological processes (rate of water exchange, course of ice phenomena), and trophic status (water transparency) as factors that can modify lake water temperature changes. Direction and rate of air and water temperature changes were analysed by means of Mann–Kendall’s and Sen’s tests. Cluster analysis (CA) was applied to group lakes characterised by similar water temperature changes. The effect of climatic and non-climatic parameters on a lake’s water temperature was assessed on the basis of principal component analysis (PCA). Water temperatures in the lakes in the years 1972–2016 were characterised by a higher rate of increase of 0.43 °C·dec−1 than the air temperature decrease of 0.34 °C·dec−1. The analysis showed a faster rate of heating of waters in western Poland. This can be explained by shorter duration of ice cover. Moreover, the changes of water temperature were affected by other factors, including the location of the lakes, their morphometric parameters, wind speed, water transparency and water exchange time.
Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/5/580/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10050580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/5/580/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10050580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Marina Astitha; D. W. Wanik; M. E. Frediani; Emmanouil N. Anagnostou; Brian M. Hartman;The interaction of severe weather, overhead lines and surrounding trees is the leading cause of outages to electric distribution networks in forested areas. In this paper, we show how utility-specific infrastructure and land cover data, aggregated around overhead lines, can improve outage predictions for Eversource Energy (formerly Connecticut Light and Power), the largest electric utility in Connecticut. Eighty-nine storms from different seasons (cold weather, warm weather, transition months) in the period 2005–2014, representing varying types (thunderstorms, blizzards, nor’easters, hurricanes) and outage severity, were simulated using the Weather Research and Forecasting (WRF) atmospheric model. WRF simulations were joined with utility outage data to calibrate four types of models: a decision tree (DT), random forest (RF), boosted gradient tree (BT) and an ensemble (ENS) decision tree regression that combined predictions from DT, RF and BT. The study shows that the ENS model forced with weather, infrastructure and land cover data was superior to the other models we evaluated, especially in terms of predicting the spatial distribution of outages. This framework could be used for predicting outages to other types of critical infrastructure networks with benefits for emergency-preparedness functions in terms of equipment staging and resource allocation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11069-015-1908-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu89 citations 89 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11069-015-1908-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: SCARPA, MASSIMILIANO; MAZZALI, UGO; PERON, FABIO;handle: 11578/217904
Abstract In recent years living walls have increasingly spread, thus becoming a diffuse architectural envelope cladding technology. Consequently, a more precise understanding of their thermal behavior and impact on the building energy balance are needed. One of the most important effects provided by the use of living walls is the shading of the building envelope, with clear benefits during the cooling period. Furthermore, many features characterize the thermal behavior of living walls, namely plant species, leaf area index (LAI), evapotranspiration, emissivity and air cavity type. All these particular characteristics have been accounted in the mathematical model developed in the frame of the presented research, whose aim is to provide a tool for the prediction of the thermal behavior of living walls. Two kinds of living walls, one with grass and closed air cavity and the other one with vertical garden and open air cavity were considered. The results achieved by means of the developed model show a good agreement with the measurements also supported by model efficiency indexes such as Nash–Sutcliffe efficiency index (NSEC). Values of around 0.7 were obtained for the NSEC index for both the investigated living walls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Kazi Masel Ullah; Puneet Dwivedi;doi: 10.1111/gcbb.12945
AbstractThe adoption of a bioenergy crop is affected by various factors, including but not limited to the characteristics of farmers, farm economics, market forces, and physical environment. This study develops a spatially explicit agent‐based model for ascertaining the adoption rate of carinata (Brassica carinata) among the farmers in the Little River Experimental Watershed located in the southern state of Georgia in the United States. Each farmer's adoption behavior is modeled using the profitability difference between traditional crop rotations (with and without carinata at different contract prices), the adoption rate of neighboring farmers, and their land allocation decisions from managing a risky portfolio of enterprises. Carinata production in the winter season once every 3 years has no conflict with the most profitable and popular traditional row crop rotations, such as cotton‐cotton‐cotton and cotton‐cotton‐peanut, to a larger extent. The results show that 28% and 85% of farmers in the watershed will adopt carinata after 33 years at a contract price of $13/bushel (bu) under two different assumptions of low (2.5%) and high (5%) initial neighborhood adoption rates. The proportions of land allocated to carinata to the total farmland under field crops are 38% and 85% after 33 years under the same low and high neighborhood adoption rates, respectively. Our results suggest that fixing the appropriate contract price of carinata will bring additional profits to farmers without any significant foreseeable agronomic risks, thereby increasing the adoption rate of carinata at a regional level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:MDPI AG Authors: Godfred Addai; Matthew Abunyewah; Michael Odei Erdiaw-Kwasie; Seth Asare Okyere; +2 AuthorsGodfred Addai; Matthew Abunyewah; Michael Odei Erdiaw-Kwasie; Seth Asare Okyere; Michael Asiedu Gyensare; Lawrence Guodaar;doi: 10.3390/su15054239
In recent years, sustainability concerns have gained increasing attention among countries and stakeholders worldwide. Towards the transition to sustainable rural development, the rural web framework (RWF) has become a consistent tool. Indicators from the RWF have been used to explore sustainable rural development for decision-making tasks, which improves the social, economic, and environmental performance of rural regions. However, the application of the RWF in studies is on the decline. Furthermore, there is a lack of literature reviews on the importance of the RWF and its relationship with different facets of sustainable development. We conducted a systematic literature review (SLR) (a) to explore how studies have used the RWF in the context of sustainable development and (b) to identify areas for further research. This study found that the RWF has mostly been used in developed countries, with fewer applications in developing countries. We suggest that there should be increased application of the RWF, particularly in developing countries, to broaden the rural web–sustainable development discourse and its relevance. This paper presents several areas where the indicators of the RWF can be applied to illustrate their relevance for policy decisions towards the achievement of the sustainable development goals (SDGs).
Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2122Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2122Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Springer Science and Business Media LLC Authors: Janine Bloomfield; Holly Pearson;Activities involving land use, land-use change,forestry, and agriculture (LUCF) can help reducegreenhouse gas (GHG) concentrations in the atmosphereby increasing biotic carbon storage, by decreasing GHGemissions, and by producing biomass as a substitutefor fossil fuels. Potential activities includereducing rates of deforestation, increasing landdevoted to forest plantations, regenerating secondaryforest, agroforestry, improving the management offorests and agricultural areas; and producing energycrops.Policymakers debating the inclusion of a variety ofLUCF activities in the Clean Development Mechanism(CDM) of the Kyoto Protocol need to consider themagnitude of the carbon contribution these activitiescould make. Existing estimates of the cumulative GHGoffset potential of LUCF activities often take aglobal or regional approach. In contrast, land-usedecisions are usually made at the local level anddepend on many factors including productive capacityof the land, financial considerations of thelandowner, and environmental concerns. Estimates ofGHG offset potential made at a local, or at mostcountry, level that incorporate these factors may belower, as well as more useful for policy analyses,than global or large regional estimates. Whilecountry-level estimates exist for forestry activities,similar estimates utilizing local information need tobe generated for agricultural activities and biofuels,as well as for the cumulative potential of all LUCFactivities in a particular location.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2000 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeOther literature typeData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1023/a:1009671527821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Authors: Helen Young; Musa Adam Ismail;Darfur farming and pastoralist livelihoods are both adaptations to the environmental variability that characterises the region. This article describes this adaptation and the longer‐term transformation of these specialised livelihoods from the perspective of local communities. Over several decades farmers and herders have experienced a continuous stream of climate, conflict and other shocks, which, combined with wider processes of change, have transformed livelihoods and undermined livelihood institutions. Their well‐rehearsed specialist strategies are now combined with new strategies to cope. These responses help people get by in the short term but risk antagonising not only their specialist strategies but also those of others. A combination of factors has undermined the former integration between farming and pastoralism and their livelihood institutions. Efforts to build resilience in similar contexts must take a long‐term view of livelihood adaptation as a specialisation, and consider the implications of new strategies for the continuity and integration of livelihood specialisations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/disa.12337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/disa.12337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | LUC4CEC| LUC4CAuthors: R. Alkama; A. Cescatti;pmid: 26912702
It's not only the carbon in the trees Forest loss affects climate not just because of the impacts it has on the carbon cycle, but also because of how it affects the fluxes of energy and water between the land and the atmosphere. Evaluating global impact is complicated because deforestation can produce different results in different climate zones, making it hard to determine large-scale trends rather than more local ones. Alkama and Cescatti conducted a global assessment of the biophysical effects of forest cover change. Forest loss amplifies diurnal temperature variations, increases mean and maximum air temperatures, and causes a significant amount of warming when compared to CO 2 emission from land-use change. Science , this issue p. 600
Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu639 citations 639 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Mariusz Ptak; Mariusz Sojka; Adam Choiński; Bogumił Nowak;doi: 10.3390/w10050580
The study evaluated the effect of environmental conditions and morphometric parameters on lake water temperature changes. The analysis was carried out on the basis of 14 lakes located in northern Poland. The assessment was based on the daily water and air temperatures from 1972 to 2016. It took into account the location of lakes (latitude, longitude, altitude) morphometric parameters (surface area, maximum and mean depth, volume), hydrological processes (rate of water exchange, course of ice phenomena), and trophic status (water transparency) as factors that can modify lake water temperature changes. Direction and rate of air and water temperature changes were analysed by means of Mann–Kendall’s and Sen’s tests. Cluster analysis (CA) was applied to group lakes characterised by similar water temperature changes. The effect of climatic and non-climatic parameters on a lake’s water temperature was assessed on the basis of principal component analysis (PCA). Water temperatures in the lakes in the years 1972–2016 were characterised by a higher rate of increase of 0.43 °C·dec−1 than the air temperature decrease of 0.34 °C·dec−1. The analysis showed a faster rate of heating of waters in western Poland. This can be explained by shorter duration of ice cover. Moreover, the changes of water temperature were affected by other factors, including the location of the lakes, their morphometric parameters, wind speed, water transparency and water exchange time.
Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/5/580/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10050580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/5/580/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10050580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Marina Astitha; D. W. Wanik; M. E. Frediani; Emmanouil N. Anagnostou; Brian M. Hartman;The interaction of severe weather, overhead lines and surrounding trees is the leading cause of outages to electric distribution networks in forested areas. In this paper, we show how utility-specific infrastructure and land cover data, aggregated around overhead lines, can improve outage predictions for Eversource Energy (formerly Connecticut Light and Power), the largest electric utility in Connecticut. Eighty-nine storms from different seasons (cold weather, warm weather, transition months) in the period 2005–2014, representing varying types (thunderstorms, blizzards, nor’easters, hurricanes) and outage severity, were simulated using the Weather Research and Forecasting (WRF) atmospheric model. WRF simulations were joined with utility outage data to calibrate four types of models: a decision tree (DT), random forest (RF), boosted gradient tree (BT) and an ensemble (ENS) decision tree regression that combined predictions from DT, RF and BT. The study shows that the ENS model forced with weather, infrastructure and land cover data was superior to the other models we evaluated, especially in terms of predicting the spatial distribution of outages. This framework could be used for predicting outages to other types of critical infrastructure networks with benefits for emergency-preparedness functions in terms of equipment staging and resource allocation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11069-015-1908-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu89 citations 89 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11069-015-1908-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu