- home
- Advanced Search
- Energy Research
- natural sciences
- US
- IT
- Energy Research
- natural sciences
- US
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors:Kai Wei;
Sanjay R. Arwade;Kai Wei
Kai Wei in OpenAIREAndrew T. Myers;
Vahid Valamanesh; +1 AuthorsAndrew T. Myers
Andrew T. Myers in OpenAIREKai Wei;
Sanjay R. Arwade;Kai Wei
Kai Wei in OpenAIREAndrew T. Myers;
Vahid Valamanesh;Andrew T. Myers
Andrew T. Myers in OpenAIREWeichiang Pang;
Weichiang Pang
Weichiang Pang in OpenAIREdoi: 10.1002/we.2006
AbstractRisk of hurricane damage is an important factor in the development of the offshore wind energy industry in the United States. Hurricane loads on an offshore wind turbine (OWT), namely wind and wave loads, not only exert large structural demands, but also have temporally changing characteristics, especially with respect to their directions. Waves are less susceptible to rapid changes, whereas wind can change its properties over shorter time scales. Misalignment of local winds and ocean waves occurs regularly during a hurricane. The strength capacity of non‐axisymmetric structures such as jackets is sensitive to loading direction and misalignment relative to structural orientation. As an example, this work examines the effect of these issues on the extreme loads and structural response of a non‐operational OWT during hurricane conditions. The considered OWT is a 5 MW turbine, supported by a jacket structure and located off the Massachusetts coast. A set of 1000 synthetic hurricane events, selected from a catalog simulating 100,000 years of hurricane activity, is used to represent hurricane conditions, and the corresponding wind speeds, wave heights and directions are estimated using empirical, parametric models for each hurricane. The impact of wind and wave directions and structural orientation are quantified through a series of nonlinear static analyses under various assumptions for combining the directions of wind and wave and structural orientation for the considered example structure. Copyright © 2016 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Bailee Lamberson; Thy N. P. Nguyen; Hannah Wehr;Todsapon Thananatthanachon;
Todsapon Thananatthanachon
Todsapon Thananatthanachon in OpenAIREThe applications of sugars as inexpensive, renewable, and nontoxic sources of hydrogen gas are systematically demonstrated by means of dehydrogenation and catalytic transfer hydrogenation reactions. The chiral bifunctional Noyori‐type catalyst, Cp*Ir(TsDPEN), is found to effectively, regioselectively, and stereoselectively dehydrogenate various sugars possessing different steric hindrance and stereochemistry. Furthermore, kinetics experiments for these dehydrogenation reactions reveal that many sugars are superior sources of hydrogen gas when compared with a traditional hydrogen donor, isopropanol. Applications of sugars in transfer hydrogenation with various hydrogen acceptors are also investigated.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Kamil Krasuski;
Kamil Krasuski
Kamil Krasuski in OpenAIREAdam Ciećko;
Adam Ciećko
Adam Ciećko in OpenAIREMieczysław Bakuła;
Mieczysław Bakuła
Mieczysław Bakuła in OpenAIREGrzegorz Grunwald;
Grzegorz Grunwald
Grzegorz Grunwald in OpenAIREdoi: 10.3390/en15207776
The paper presents a modified algorithm for determining the accuracy parameter of the system for differential corrections and monitoring (SDCM) navigation solution in air navigation. For this purpose, a solution to determine the resultant accuracy parameter was proposed by using two on-board global navigation satellite system (GNSS) receivers. The mathematical algorithm takes into account the calculation of a single point positioning accuracy for a given GNSS receiver and a weighting factor combining the position error values. The weighting factor was determined as a function of the number of tracked GNSS satellites used in the SDCM single point positioning solution. The resultant accuracy parameter was expressed in ellipsoidal coordinates BLh (B—latitude, L—longitude, h—ellipsoidal height). The study used GNSS kinematic data recorded by two on-board receivers: Trimble Alloy and Septentrio AsterRx2i, located in a Diamond DA 20-C1 aircraft. The test flight was performed near the city of Olsztyn in north-eastern Poland. Calculations and analyses were performed using RTKLIB software and the Scilab environment. On the basis of the performed tests, it was found that the proposed algorithm for SDCM system allows for improvement in the determination of the resultant accuracy value by 56–80% in relation to the results of position errors from a single GNSS receiver. Additionally, the proposed algorithm was tested for the European Geostationary Navigation Overlay Service (EGNOS) system, and in this case, the improvement in the accuracy parameter was even better and was in the range of 69–89%. The resulting SDCM and EGNOS positioning accuracy met the International Civil Aviation Organization (ICAO) certification requirements for SBAS systems in air navigation. The mathematical algorithm developed in this work was tested positively and can be implemented within the SBAS augmentation system in air navigation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors:Asylbek A. Zhanserkeev;
Justin J. Talbot;Asylbek A. Zhanserkeev
Asylbek A. Zhanserkeev in OpenAIRERyan P. Steele;
Ryan P. Steele
Ryan P. Steele in OpenAIREpmid: 34323487
The ab initio molecular dynamics (AIMD) method provides a computational route for the real-time simulation of reactive chemistry. An often-overlooked capability of this approach is the opportunity to examine the electronic evolution of a chemical system. For AIMD trajectories based on Hartree-Fock or density functional theory methods, the real-time evolution of single-particle molecular orbitals (MOs) can provide detailed insights into the time-dependent electronic structure of molecules. The evolving electronic Hamiltonians at each MD step pose problems for tracking and visualizing a given MO's character, ordering, and associated phase throughout an MD trajectory, however. This report presents and assesses a simple algorithm for correcting these deficiencies by exploiting similarity projections of the electronic structure between neighboring MD steps. Two aspects bring this analysis beyond a simple step-to-step projection scheme. First, the challenging case of coincidental orbital degeneracies is resolved via a quadrupole-field perturbation that nonetheless rigorously preserves energy conservation. Second, the resulting orbitals are shown to evolve adiabatically, in spite of the "preservation of character" concept that undergirds a projection of neighboring steps' MOs. The method is tested on water clusters, which exhibit considerable dynamic degeneracies, as well as a classic organic nucleophilic substitution reaction, in which the adiabatic evolution of the bonding orbitals clarifies textbook interpretations of the electronic structure during this reactive collision.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Chemical Theory and ComputationArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.1c00553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Chemical Theory and ComputationArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.1c00553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:MDPI AG Abderraouf Elferchichi; Giuseppina Giorgio; Nicola Lamaddalena; Maria Ragosta;Vito Telesca;
Vito Telesca
Vito Telesca in OpenAIREdoi: 10.3390/su9122337
handle: 11563/131248
The present study provides an assessment of the climate variability at a subnational scale, focusing on the case of the Apulia region, in Southeastern Italy. The variables considered for the purpose of a trend analysis were the minimum, maximum, and mean temperatures, and reference evapotranspiration. These are very important in an urban–rural planning context. The study was based on 38 monitoring stations and consisted in the application of the nonparametric Mann–Kendall test and a progressive trend analysis, both used to detect the changes. The 1950–2003 period was investigated on seasonal and annual scales. The results generally showed a warming process and an acceleration of the atmospheric evaporative demand which took place especially since the mid-1970s. The latter had a significant positive trend, while the period before the break point of the 70s had a cooling effect. Finally, the warming effect was more pronounced for minimum temperatures.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/131248Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/131248Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: Steven Flanagan;George Hurtt;
George Hurtt
George Hurtt in OpenAIREJustin Fisk;
Justin Fisk
Justin Fisk in OpenAIRERitvik Sahajpal;
+4 AuthorsRitvik Sahajpal
Ritvik Sahajpal in OpenAIRESteven Flanagan;George Hurtt;
George Hurtt
George Hurtt in OpenAIREJustin Fisk;
Justin Fisk
Justin Fisk in OpenAIRERitvik Sahajpal;
Ritvik Sahajpal
Ritvik Sahajpal in OpenAIREMatthew Hansen;
Katelyn Dolan;Matthew Hansen
Matthew Hansen in OpenAIREJoe Sullivan;
Maosheng Zhao;Joe Sullivan
Joe Sullivan in OpenAIREdoi: 10.3390/cli4010002
handle: 1903/31561
There are strong relationships between climate and ecosystems. With the prospect of anthropogenic forcing accelerating climate change, there is a need to understand how terrestrial vegetation responds to this change as it influences the carbon balance. Previous studies have primarily addressed this question using empirically based models relating the observed pattern of vegetation and climate, together with scenarios of potential future climate change, to predict how vegetation may redistribute. Unlike previous studies, here we use an advanced mechanistic, individually based, ecosystem model to predict the terrestrial vegetation response from future climate change. The use of such a model opens up opportunities to test with remote sensing data, and the possibility of simulating the transient response to climate change over large domains. The model was first run with a current climatology at half-degree resolution and compared to remote sensing data on dominant plant functional types for northern North America for validation. Future climate data were then used as inputs to predict the equilibrium response of vegetation in terms of dominant plant functional type and carbon redistribution. At the domain scale, total forest cover changed by ~2% and total carbon storage increased by ~8% in response to climate change. These domain level changes were the result of much larger gross changes within the domain. Evergreen forest cover decreased 48% and deciduous forest cover increased 77%. The dominant plant functional type changed on 58% of the sites, while total carbon in deciduous vegetation increased 107% and evergreen vegetation decreased 31%. The percent of terrestrial carbon from deciduous and evergreen plant functional types changed from 27%/73% under current climate conditions, to 54%/46% under future climate conditions. These large predicted changes in vegetation and carbon in response to future climate change are comparable to previous empirically based estimates, and motivate the need for future development with this mechanistic model to estimate the transient response to future climate changes.
Climate arrow_drop_down Digital Repository at the University of MarylandArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli4010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate arrow_drop_down Digital Repository at the University of MarylandArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli4010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley AbstractThis study explores an integrated biomass conversion system based on a common fast pyrolysis step and two subsequent bio‐oil upgrading pathways. The two options are bio‐oil thermochemical upgrading to drop‐in transportation biofuels through hydrotreating and hydrocracking, and bio‐oil electrochemical conversion for electrical power generation using a direct bio‐oil fuel cell method. The technoeconomic performances of biomass‐to‐biofuels and biomass‐to‐electricity pathways are first examined individually, and then integrated for the analysis of a hybrid biomass conversion system. A biomass facility of 2000 tonnes per day is investigated as a baseline. The minimum fuel‐selling price (MFSP) is estimated to be $ 2.48 per gallon, with biomass feedstock and other operating costs as major contributors. A very high minimum electricity‐selling price (MESP) of $ 5.36 per kWh is projected based on the current laboratory‐scale fuel cell configuration. Sensitivity analysis reveals that the effective reactant content in bio‐oil, the degree of oxidation, and the fuel cell system efficiency play key roles in the MESP. The estimate can be reduced to $ 0.96 per kWh if target values of the three parameters are met. The results of the hybrid system suggest that the MESP can be reduced substantially from $ 0.96 to $ 0 per kWh when the hybrid system increases the bio‐oil fraction for biofuel production from 0 to 75.8 %, given a biofuel MFSP of $ 3 per gallon.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201700395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201700395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 QatarPublisher:Elsevier BV Authors:Gunda, Mohanakrishna;
Gunda, Mohanakrishna
Gunda, Mohanakrishna in OpenAIREAbu-Reesh, Ibrahim M.;
Al-Raoush, Riyadh I.;Abu-Reesh, Ibrahim M.
Abu-Reesh, Ibrahim M. in OpenAIREHe, Zhen;
He, Zhen
He, Zhen in OpenAIRECylindrical graphite microbial fuel cell (MFC) configuration designed by eliminating distinct casing and membrane was evaluated for bioelectrogenesis and treatment of real-field wastewaters. Both petroleum refinery wastewater (PRW) and Labanah whey wastewater (LW) were used as substrates, and investigated for electricity generation and organic removal under batch mode operation. PRW showed higher bioelectricity generation (current and power generation of 3.35mA and 1.12mW at 100Ω) compared to LW (3.2mA and 1.02mW). On the contrary, higher substrate degradation efficiency was achieved using LW (72.76%) compared to PRW (45.06%). Superior function of MFC operation in terms of volumetric power density (PRW, 28.27W/m3; LW, 23.23W/m3) suggesting the feasibility of using these wastewaters for bioelectricity generation. Large sources of wastewater that generating in the Middle-East countries have potential to produce renewable energy from the treatment, which helps for the sustainable wastewater management and simultaneous renewable energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:SAGE Publications Authors: Paul P. Craig; Willett Kempton; Craig R. Kuennen;Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x9500600308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x9500600308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:NSF | Dimensions: Collaborative..., NSF | Lake Erie Center for Fres..., NSF | DISES: Coproducing Action... +1 projectsNSF| Dimensions: Collaborative Research: The Cyanobacterial Bloom Microbial Interactome as a Model for Understanding Patterns in Functional Biodiversity ,NSF| Lake Erie Center for Fresh Waters and Human Health ,NSF| DISES: Coproducing Actionable Science to Understand, Mitigate, and Adapt to Cyanobacterial Harmful Algal Blooms (CHABS) ,NIH| Lake Erie Center for the Great Lakes and Human HealthAuthors:Brittany N, Zepernick;
Brittany N, Zepernick
Brittany N, Zepernick in OpenAIRESteven W, Wilhelm;
Steven W, Wilhelm
Steven W, Wilhelm in OpenAIREGeorge S, Bullerjahn;
Hans W, Paerl;George S, Bullerjahn
George S, Bullerjahn in OpenAIREAbstractBillions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era—starting with the Great Oxidation Event—fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co‐existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater‐marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that “water flows downhill”. Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.
Environmental Microb... arrow_drop_down Environmental Microbiology ReportsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1758-2229.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Microb... arrow_drop_down Environmental Microbiology ReportsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1758-2229.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu