- home
- Advanced Search
- Energy Research
- 13. Climate action
- 6. Clean water
- US
- IT
- Energy Policy
- Energy Research
- 13. Climate action
- 6. Clean water
- US
- IT
- Energy Policy
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Fernando Castellanos Silveria; Ralph A. Luken;Abstract Given the need to reduce the CO2 emissions coming from the manufacturing sector, it is important, for planning purposes, to know which countries and which manufacturing sub-sectors have the greatest potential for reducing energy use. Using data from the International Atomic Energy Agency and the United Nations Industrial Development Organization, the authors estimate trends in global decoupling of energy use and manufacturing value added, compare energy-use intensity in six country groups and estimate the potential for reducing energy use and CO2 emissions under two scenarios and compare selected sub-sector energy intensity and estimate the potential for reducing energy use CO2 emissions. The comparison of energy intensities across country groups and among countries suggests that there still remains significant potential to reduce energy use and associated CO2 emissions. The analysis of four sub-sectors in developing and transition economies also shows similar but varied potential for reducing energy use and associated CO2 emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Leland Tarnay; Xavier Gabarrell; Gara Villalba; Elliott Campbell;Abstract Like cities, many large national parks in the United States often include “urban” visitor and residential areas that mostly demand (rather than produce) energy and key urban materials. The U.S. National Park Service has committed to quantifying and reducing scopes 1 and 2 emissions by 35% and scope 3 emissions by 10% by 2020 for all parks. Current inventories however do not provide the specificity or granularity to evaluate solutions that address fundamental inefficiencies in these inventories. By quantifying and comparing the importance of different inventory sectors as well as upstream and downstream emissions in Yosemite National Park (YNP), this carbon footprint provides a case study and potential template for quantifying future emissions reductions, and for evaluating tradeoffs between them. Results indicate that visitor-related emissions comprise the largest fraction of the Yosemite carbon footprint, and that increases in annual visitation (3.43–3.90 million) coincide with and likely drive interannual increases in the magnitude of Yosemite′s extended inventory (126,000–130,000 t CO2e). Given this, it is recommended that “per visitor” efficiency be used as a metric to track progress. In this respect, YNP has annually decreased kilograms of GHG emissions per visitor from 36.58 (2008) to 32.90 (2011). We discuss opportunities for reducing this measure further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Fulvio Fontini; Giulia Pavan;Abstract We evaluate the contribution of technological change in reducing CO 2 emissions in the Italian pulp and paper industry during the first and second phases of application of the European Union Emission Trading System (EU-ETS). We decompose the variation in emission and emission intensity into three different types of effects: a composition effect, a technique effect and a scale effect. The composition effect measures the change in emissions and emissions intensity due to a shift in production towards products that cause less emissions. The technique effect measures the change per each type of product, thereby accounting for technology improvements in the production of each type of good produced. The scale effect singles out the reduction in total emission due to an overall reduction in output. We show that the first phase of the application of EU-ETS has led to a reduction in both emissions and emission intensity due to the composition effect. The technological change has had a limited negative impact on emissions in the first phase, while in the second phase there has been limited technology improvement in the industry. However, the figures of the scale effect show that the larger reduction in emission is due to the overall decrease in output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Lawrence J. Reichle; Kevin Bolon; Michael McWilliams; Mandy Sha; Gloria Helfand; Amanda Christine Smith; Robert Beach;Abstract The benefit-cost analysis of standards to reduce vehicle greenhouse gas emissions and improve fuel economy by the U.S. Environmental Protection Agency (EPA) and the Department of Transportation (DOT) displays large net benefits from fuel savings for new vehicle buyers. This finding points to an energy efficiency gap: the energy-saving technology provided in private markets appears not to include all the technologies that produce net private benefits. The gap exists if the costs of energy-saving technologies are lower than the present value of fuel reductions, and “hidden costs” – undesirable aspects of the new technologies – do not exceed the net financial benefits. This study examines the existence of hidden costs in energy-saving technologies through a content analysis of auto reviews of model-year 2014 vehicles. Results suggest that it is possible to use fuel-saving technologies on vehicles without imposing hidden costs. For each technology examined, reviews with positive evaluations outnumbered those with negative evaluations. Evidence is scant of a robust relationship between vehicles’ use of energy-saving technologies and negatively rated operational characteristics, such as handling or acceleration. Results do not provide evidence for hidden costs as the explanation of the efficiency gap for vehicle fuel-saving technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | POEMEC| POEMSubash Dhar; Michel G.J. den Elzen; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Bas van Ruijven; Priyadarshi R. Shukla; Paul L. Lucas;This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2 °C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, United KingdomPublisher:Elsevier BV Spencer, T; Pierfederici, R; Sartor, O; Berghmans, N; Samadi, S; Fischedick, M; Knoop, K; Pye, S; Criqui, P; Mathy, S; Capros, P; Fragkos, P; Bukowski, M; Śniegocki, A; Rosa Virdis, M; Gaeta, M; Pollier, K; Cassisa, C;Decarbonisation of energy systems requires deep structural change. The purpose of this research was to analyse the rates of change taking place in the energy systems of each Member State of the European Union (EU), and the EU in aggregate, in the light of the EU's climate change mitigation objectives. Trends on indicators such as sectoral activity levels and composition, energy intensity, and carbon intensity of energy were compared with decadal benchmarks derived from deep decarbonisation scenarios. The methodology applied provides a useful and informative approach to tracking decarbonisation of energy systems. The results show that while the EU has made significant progress in decarbonising its energy system. On a number of indicators assessed the results show that a significant acceleration from historical levels is required in order to reach the rates of change seen on the future benchmarks for deep decarbonisation. The methodology applied provides an example of how the research community and international organisations could complement the transparency mechanism developed by the Paris Agreement on climate change, to improve understanding of progress toward low-carbon energy systems.
Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01586028Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01586028Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type , Research , Preprint 2012Publisher:Edward Elgar Publishing Funded by:EC | ICARUSEC| ICARUSElena Verdolini; Giulia Fiorese; Giulia Fiorese; Valentina Bosetti; Valentina Bosetti; Michela Catenacci;This paper illustrates the main results of an expert elicitation survey on advanced (second and third generation) biofuel technologies. The survey focuses on eliciting probabilistic information on the future costs of advanced biofuels and on the potential role of Research, Development and Demonstration (RD&D) efforts in reducing these costs and in supporting the deployment of biofuels in Organisation for Economic Co-operation and Development (OECD) and non-OECD countries. Fifteen leading experts from different EU member states provide insights on the future potential of advanced biofuel technologies both in terms of costs and diffusion. This information results in a number of policy recommendations with respect to public RD&D strategies and is an important contribution to the integrated assessment modelling community.
Research Papers in E... arrow_drop_down http://dx.doi.org/10.4337/9781...Part of book or chapter of book . 2012Data sources: European Research Council (ERC)https://doi.org/10.4337/978178...Part of book or chapter of book . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4337/9781782546474.00012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down http://dx.doi.org/10.4337/9781...Part of book or chapter of book . 2012Data sources: European Research Council (ERC)https://doi.org/10.4337/978178...Part of book or chapter of book . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4337/9781782546474.00012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Carlo Drago; Andrea Gatto; Andrea Gatto;Resilience is receiving increasing scientific attention, albeit its notion is still in progress and not univocal, especially when it comes to specific sectors such as energy. Energy and resilience policy is detected as a dominant strategy to achieve international development objectives throughout long-term sustainability and wellbeing goals. Energy resilience also crosses major energy policy issues – namely energy vulnerability, security, poverty, and justice. Making use of the Web Of Science 2018 release, this work aims at contributing to a clarification of the concept of energy resilience, proposing a taxonomy. The bibliometric outputs show a sharp increase in scientific publications on the issue. The bibliometric analysis suggests a taxonomy of energy resilience based on 7 approaches or strategies. The results suggest an evolution of the conceptual contributions, that enlarge resilience early use, merely applied to technical and hard sciences. Resilience is today used in different disciplines, including social sciences and sustainability studies, as part of a holistic approach centered on sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.111007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 5visibility views 5 download downloads 204 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.111007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Andrea Gatto; Andrea Gatto; Concetto Paolo Vinci; Luigi Aldieri;Abstract In modern developed economies, one of the primary objectives is to manage the transition from polluting to cleaner technologies as efficiently as possible. By now, in the current empirical literature, one can identify technological spillovers from environmental innovations as a major driver of this process. Specific energy policy aspects connected with industry behaviour have yet to be explored. The aim of this paper is to investigate energy efficiency via environmental innovation and the resulting degree of resilience and adaptation of both developed and developing countries. The work applies the non-parametric DEA (Data Envelopment Analysis) framework and Tobit analysis. For this scope, it is built a panel dataset made of some 5000 observations based on energy policy and sustainable development variables for 136 OECD and non-OECD countries. The results show that knowledge spillovers from environmental innovations reduce inefficiency and therefore strengthen the resilience of economies that decide and manage to invest adequately in the transition to more sustainable technologies. Besides, OECD countries improve their energy efficiency scores over time, whilst non-OECD countries do not. This implies that sustainable technologies transition is made more efficient by environmental innovation but the process is fostered by disposing of a resilient economic system – hence, vulnerability can affect the transition. These hypotheses lead to important economic, social and environmental implications for energy policy modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Francesca Pagliaro; Francesca Hugony; Fabio Zanghirella; Rossano Basili; Monica Misceo; Luca Colasuonno; Vincenzo Del Fatto;Abstract Energy Performance Certificates (EPCs) and EPC digital registers are key tools to evaluate different aspects of the building stock and its energy consumption. This paper presents several detailed energy performance evaluations on the Italian buildings based on a sample of over 2,000,000 EPCs extracted from the national EPC register (SIAPE), contributing to the definition of an updated energy performance baseline of the Italian building stock. This is the first work using the Italian EPC register to define such a baseline to the extent of the authors’ knowledge. Furthermore, combined analyses of EPC data were carried out to obtain information on the influence of the Italian energy regulations on building characteristics and on the effectiveness of energy strategy application for building renovation. This study underlines the relevance of EPC registers and how the combined analysis of EPC parameters can provide a large amount of useful information on several aspects of the building stock, allowing the monitoring of the impact of the Italian energy policy framework on buildings energy performance. Finally, based on these results, the paper supports public authorities and decision-makers in planning and developing future energy programs and identifying the best practices on the Italian territory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Fernando Castellanos Silveria; Ralph A. Luken;Abstract Given the need to reduce the CO2 emissions coming from the manufacturing sector, it is important, for planning purposes, to know which countries and which manufacturing sub-sectors have the greatest potential for reducing energy use. Using data from the International Atomic Energy Agency and the United Nations Industrial Development Organization, the authors estimate trends in global decoupling of energy use and manufacturing value added, compare energy-use intensity in six country groups and estimate the potential for reducing energy use and CO2 emissions under two scenarios and compare selected sub-sector energy intensity and estimate the potential for reducing energy use CO2 emissions. The comparison of energy intensities across country groups and among countries suggests that there still remains significant potential to reduce energy use and associated CO2 emissions. The analysis of four sub-sectors in developing and transition economies also shows similar but varied potential for reducing energy use and associated CO2 emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Leland Tarnay; Xavier Gabarrell; Gara Villalba; Elliott Campbell;Abstract Like cities, many large national parks in the United States often include “urban” visitor and residential areas that mostly demand (rather than produce) energy and key urban materials. The U.S. National Park Service has committed to quantifying and reducing scopes 1 and 2 emissions by 35% and scope 3 emissions by 10% by 2020 for all parks. Current inventories however do not provide the specificity or granularity to evaluate solutions that address fundamental inefficiencies in these inventories. By quantifying and comparing the importance of different inventory sectors as well as upstream and downstream emissions in Yosemite National Park (YNP), this carbon footprint provides a case study and potential template for quantifying future emissions reductions, and for evaluating tradeoffs between them. Results indicate that visitor-related emissions comprise the largest fraction of the Yosemite carbon footprint, and that increases in annual visitation (3.43–3.90 million) coincide with and likely drive interannual increases in the magnitude of Yosemite′s extended inventory (126,000–130,000 t CO2e). Given this, it is recommended that “per visitor” efficiency be used as a metric to track progress. In this respect, YNP has annually decreased kilograms of GHG emissions per visitor from 36.58 (2008) to 32.90 (2011). We discuss opportunities for reducing this measure further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Fulvio Fontini; Giulia Pavan;Abstract We evaluate the contribution of technological change in reducing CO 2 emissions in the Italian pulp and paper industry during the first and second phases of application of the European Union Emission Trading System (EU-ETS). We decompose the variation in emission and emission intensity into three different types of effects: a composition effect, a technique effect and a scale effect. The composition effect measures the change in emissions and emissions intensity due to a shift in production towards products that cause less emissions. The technique effect measures the change per each type of product, thereby accounting for technology improvements in the production of each type of good produced. The scale effect singles out the reduction in total emission due to an overall reduction in output. We show that the first phase of the application of EU-ETS has led to a reduction in both emissions and emission intensity due to the composition effect. The technological change has had a limited negative impact on emissions in the first phase, while in the second phase there has been limited technology improvement in the industry. However, the figures of the scale effect show that the larger reduction in emission is due to the overall decrease in output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Lawrence J. Reichle; Kevin Bolon; Michael McWilliams; Mandy Sha; Gloria Helfand; Amanda Christine Smith; Robert Beach;Abstract The benefit-cost analysis of standards to reduce vehicle greenhouse gas emissions and improve fuel economy by the U.S. Environmental Protection Agency (EPA) and the Department of Transportation (DOT) displays large net benefits from fuel savings for new vehicle buyers. This finding points to an energy efficiency gap: the energy-saving technology provided in private markets appears not to include all the technologies that produce net private benefits. The gap exists if the costs of energy-saving technologies are lower than the present value of fuel reductions, and “hidden costs” – undesirable aspects of the new technologies – do not exceed the net financial benefits. This study examines the existence of hidden costs in energy-saving technologies through a content analysis of auto reviews of model-year 2014 vehicles. Results suggest that it is possible to use fuel-saving technologies on vehicles without imposing hidden costs. For each technology examined, reviews with positive evaluations outnumbered those with negative evaluations. Evidence is scant of a robust relationship between vehicles’ use of energy-saving technologies and negatively rated operational characteristics, such as handling or acceleration. Results do not provide evidence for hidden costs as the explanation of the efficiency gap for vehicle fuel-saving technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | POEMEC| POEMSubash Dhar; Michel G.J. den Elzen; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Bas van Ruijven; Priyadarshi R. Shukla; Paul L. Lucas;This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2 °C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, United KingdomPublisher:Elsevier BV Spencer, T; Pierfederici, R; Sartor, O; Berghmans, N; Samadi, S; Fischedick, M; Knoop, K; Pye, S; Criqui, P; Mathy, S; Capros, P; Fragkos, P; Bukowski, M; Śniegocki, A; Rosa Virdis, M; Gaeta, M; Pollier, K; Cassisa, C;Decarbonisation of energy systems requires deep structural change. The purpose of this research was to analyse the rates of change taking place in the energy systems of each Member State of the European Union (EU), and the EU in aggregate, in the light of the EU's climate change mitigation objectives. Trends on indicators such as sectoral activity levels and composition, energy intensity, and carbon intensity of energy were compared with decadal benchmarks derived from deep decarbonisation scenarios. The methodology applied provides a useful and informative approach to tracking decarbonisation of energy systems. The results show that while the EU has made significant progress in decarbonising its energy system. On a number of indicators assessed the results show that a significant acceleration from historical levels is required in order to reach the rates of change seen on the future benchmarks for deep decarbonisation. The methodology applied provides an example of how the research community and international organisations could complement the transparency mechanism developed by the Paris Agreement on climate change, to improve understanding of progress toward low-carbon energy systems.
Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01586028Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01586028Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type , Research , Preprint 2012Publisher:Edward Elgar Publishing Funded by:EC | ICARUSEC| ICARUSElena Verdolini; Giulia Fiorese; Giulia Fiorese; Valentina Bosetti; Valentina Bosetti; Michela Catenacci;This paper illustrates the main results of an expert elicitation survey on advanced (second and third generation) biofuel technologies. The survey focuses on eliciting probabilistic information on the future costs of advanced biofuels and on the potential role of Research, Development and Demonstration (RD&D) efforts in reducing these costs and in supporting the deployment of biofuels in Organisation for Economic Co-operation and Development (OECD) and non-OECD countries. Fifteen leading experts from different EU member states provide insights on the future potential of advanced biofuel technologies both in terms of costs and diffusion. This information results in a number of policy recommendations with respect to public RD&D strategies and is an important contribution to the integrated assessment modelling community.
Research Papers in E... arrow_drop_down http://dx.doi.org/10.4337/9781...Part of book or chapter of book . 2012Data sources: European Research Council (ERC)https://doi.org/10.4337/978178...Part of book or chapter of book . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4337/9781782546474.00012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down http://dx.doi.org/10.4337/9781...Part of book or chapter of book . 2012Data sources: European Research Council (ERC)https://doi.org/10.4337/978178...Part of book or chapter of book . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4337/9781782546474.00012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Carlo Drago; Andrea Gatto; Andrea Gatto;Resilience is receiving increasing scientific attention, albeit its notion is still in progress and not univocal, especially when it comes to specific sectors such as energy. Energy and resilience policy is detected as a dominant strategy to achieve international development objectives throughout long-term sustainability and wellbeing goals. Energy resilience also crosses major energy policy issues – namely energy vulnerability, security, poverty, and justice. Making use of the Web Of Science 2018 release, this work aims at contributing to a clarification of the concept of energy resilience, proposing a taxonomy. The bibliometric outputs show a sharp increase in scientific publications on the issue. The bibliometric analysis suggests a taxonomy of energy resilience based on 7 approaches or strategies. The results suggest an evolution of the conceptual contributions, that enlarge resilience early use, merely applied to technical and hard sciences. Resilience is today used in different disciplines, including social sciences and sustainability studies, as part of a holistic approach centered on sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.111007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 5visibility views 5 download downloads 204 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.111007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Andrea Gatto; Andrea Gatto; Concetto Paolo Vinci; Luigi Aldieri;Abstract In modern developed economies, one of the primary objectives is to manage the transition from polluting to cleaner technologies as efficiently as possible. By now, in the current empirical literature, one can identify technological spillovers from environmental innovations as a major driver of this process. Specific energy policy aspects connected with industry behaviour have yet to be explored. The aim of this paper is to investigate energy efficiency via environmental innovation and the resulting degree of resilience and adaptation of both developed and developing countries. The work applies the non-parametric DEA (Data Envelopment Analysis) framework and Tobit analysis. For this scope, it is built a panel dataset made of some 5000 observations based on energy policy and sustainable development variables for 136 OECD and non-OECD countries. The results show that knowledge spillovers from environmental innovations reduce inefficiency and therefore strengthen the resilience of economies that decide and manage to invest adequately in the transition to more sustainable technologies. Besides, OECD countries improve their energy efficiency scores over time, whilst non-OECD countries do not. This implies that sustainable technologies transition is made more efficient by environmental innovation but the process is fostered by disposing of a resilient economic system – hence, vulnerability can affect the transition. These hypotheses lead to important economic, social and environmental implications for energy policy modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Francesca Pagliaro; Francesca Hugony; Fabio Zanghirella; Rossano Basili; Monica Misceo; Luca Colasuonno; Vincenzo Del Fatto;Abstract Energy Performance Certificates (EPCs) and EPC digital registers are key tools to evaluate different aspects of the building stock and its energy consumption. This paper presents several detailed energy performance evaluations on the Italian buildings based on a sample of over 2,000,000 EPCs extracted from the national EPC register (SIAPE), contributing to the definition of an updated energy performance baseline of the Italian building stock. This is the first work using the Italian EPC register to define such a baseline to the extent of the authors’ knowledge. Furthermore, combined analyses of EPC data were carried out to obtain information on the influence of the Italian energy regulations on building characteristics and on the effectiveness of energy strategy application for building renovation. This study underlines the relevance of EPC registers and how the combined analysis of EPC parameters can provide a large amount of useful information on several aspects of the building stock, allowing the monitoring of the impact of the Italian energy policy framework on buildings energy performance. Finally, based on these results, the paper supports public authorities and decision-makers in planning and developing future energy programs and identifying the best practices on the Italian territory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu