- home
- Advanced Search
- Energy Research
- 2021-2025
- 12. Responsible consumption
- 15. Life on land
- US
- IT
- Energy Research
- 2021-2025
- 12. Responsible consumption
- 15. Life on land
- US
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:
Florian Laggner; Florian Laggner
Florian Laggner in OpenAIRE
Z.A. Xing; Olivier Izacard;Z.A. Xing
Z.A. Xing in OpenAIRE
Egemen Kolemen; +2 AuthorsEgemen Kolemen
Egemen Kolemen in OpenAIRE
Florian Laggner; Florian Laggner
Florian Laggner in OpenAIRE
Z.A. Xing; Olivier Izacard;Z.A. Xing
Z.A. Xing in OpenAIRE
Egemen Kolemen; Egemen Kolemen
Egemen Kolemen in OpenAIRE
Andrew Nelson; Andrew Nelson;Andrew Nelson
Andrew Nelson in OpenAIRECoupling between the UEDGE (edge fluid model), GINGRED (grid generation) and CAKE (equilibrium reconstruction) codes opens the door for automated interpretative scrape-off-layer (SOL) analysis over entire discharges, providing information that is essential in efforts to couple the SOL to core transport codes. In this work, we utilize new developments in the autoUEDGE code (Izacard et al. 2018) to investigate the behavior of the DIII-D SOL during the temporal evolution of an edge-localized mode (ELM) cycle. Modeled temperature and density profiles in UEDGE are automatically matched to experimental measurements by iteratively and self-consistently adjusting transport coefficient profiles in the plasma edge. This analysis is completed over multiple ELM cycles of a well-diagnosed discharge with long (∼100ms) inter-ELM periods. Directly after the ELM crash, a short period of high-density, low-temperature conditions is observed in Langmuir probe measurements at the outer divertor. This regime is associated with enhanced Dαemission and incident particle flux, suggesting that the divertor enters a period of high recycling after an ELM crash. After about ∼25ms, divertor conditions return to their pre-ELM conditions and remain there for several tens of milliseconds. Using the autoUEDGE code, the SOL is modeled as a function of ELM cycle using upstream profiles as input. The 2D modeling successfully reproduces both divertor Thomson scattering measurements and the experimentally observed divertor dynamics. Though the recycling is kept fixed throughout the modeling, changes in particle fluxes are consistent with local experimental recycling changes induced by ELMs. Agreement between modeling and observation suggests a strong link between upstream profiles and the high-recycling divertor conditions directly following large type-I ELMs.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100883&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100883&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Institute of Mathematical Sciences (AIMS) Authors:
Abdulwakil Olawale Saba; Victor Oscar Eyo; Isa Olalekan Elegbede; Kafayat Adetoun Fakoya; +4 AuthorsAbdulwakil Olawale Saba
Abdulwakil Olawale Saba in OpenAIRE
Abdulwakil Olawale Saba; Victor Oscar Eyo; Isa Olalekan Elegbede; Kafayat Adetoun Fakoya;Abdulwakil Olawale Saba
Abdulwakil Olawale Saba in OpenAIRE
Akinloye Emmanuel Ojewole; Fareed Olatunji Dawodu; Rashidat Adebola Adewale; Mohammad Noor Azmai Amal;Akinloye Emmanuel Ojewole
Akinloye Emmanuel Ojewole in OpenAIRE<abstract> <p>Fish is a key component of Nigeria's protein supply, making up about 40% of the nation's protein intake and considerably aiding in the achievement of the second Sustainable Development Goal of feeding the expanding population. Despite its importance, Nigeria's fish production and supply cannot keep up with demand. While total fish output has increased from 1,073,059 tonnes in 2014 to 1,169,000 tonnes in 2018 and is expected to reach 1,275,000 tonnes by 2030, there is a great supply gap. Fish production not only affects food security but also the national economy and employment. Notwithstanding, the fisheries sub-sector suffers several difficulties, such as poor management, a deficient fisheries policy, overfishing, diminishing catch, and a lack of technical know-how among fish growers and fishermen. Thus, exploring untapped aquaculture potential and managing small-scale fisheries effectively are necessary to close the gap between the demand for and supply of fish. The fish output situation can be improved by enforcing fisheries policy and regulations, increasing investments in ethical fisheries and aquaculture, and providing sufficient training for fish farmers and fisherfolk. To reduce waste associated with the limited number of fish now produced, post-harvest losses must also be addressed. By solving these issues and putting in place the necessary actions, Nigeria can increase its fish production, strengthen its food security, and accomplish the sustainable development goals in its evolving blue economy.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/agrfood.2024029&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/agrfood.2024029&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Dadirai Matarira;
Onisimo Mutanga; Onisimo Mutanga
Onisimo Mutanga in OpenAIRE
Maheshvari Naidu; Maheshvari Naidu
Maheshvari Naidu in OpenAIRE
Terence Darlington Mushore; +1 AuthorsTerence Darlington Mushore
Terence Darlington Mushore in OpenAIREDadirai Matarira;
Onisimo Mutanga; Onisimo Mutanga
Onisimo Mutanga in OpenAIRE
Maheshvari Naidu; Maheshvari Naidu
Maheshvari Naidu in OpenAIRE
Terence Darlington Mushore; Terence Darlington Mushore
Terence Darlington Mushore in OpenAIRE
Marco Vizzari; Marco Vizzari
Marco Vizzari in OpenAIREdoi: 10.3390/su15032724
handle: 11391/1549345
The growing population in informal settlements expedites alterations in land use and land cover (LULC) over time. Understanding the patterns and processes of landscape transitions associated with informal settlement dynamics in rapidly urbanizing cities is critical for better understanding of consequences, especially in environmentally vulnerable areas. The study sought to map and systematically analyze informal settlement growth patterns, dynamics and processes, as well as associated LULC transitions in Durban Metropolitan area, from 2015 to 2021. The study applied an object-based image classification on PlanetScope imagery within the Google Earth Engine (GEE) platform. Further, intensity analysis approach was utilized to quantitatively investigate inter-category transitions at category and transition levels. Thus far, no study of land conversion to and from informal settlement areas in South Africa has exploited both GEE and intensity analysis approaches. The results suggest spatial growth of informal settlements with a total net gain of 3%. Intensity analysis results at category level revealed that informal settlements were actively losing and gaining land area within the period, with yearly gain and loss intensity of 72% and 54%, correspondingly, compared to the uniform intensity of 26%. While the growth of informal settlements avoided water bodies over the studied period, there was an observed systematic process of transition between informal settlements and other urban land. Government policy initiatives toward upgrading informal housing could be attributed to the transitions between informal and other urban settlements. This study illustrates the efficacy of intensity analysis in enhancing comprehension of the patterns and processes in land changes, which aids decision making for suitable urban land upgrading plans in the Durban Metropolitan area.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2724/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032724&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2724/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032724&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, France, France, ItalyPublisher:Springer Science and Business Media LLC Authors:
Gert-Jan Nabuurs; Gert-Jan Nabuurs
Gert-Jan Nabuurs in OpenAIRE
Nancy Harris; Nancy Harris
Nancy Harris in OpenAIRE
Douglas Sheil; Douglas Sheil
Douglas Sheil in OpenAIRE
Marc Palahi; +5 AuthorsMarc Palahi
Marc Palahi in OpenAIRE
Gert-Jan Nabuurs; Gert-Jan Nabuurs
Gert-Jan Nabuurs in OpenAIRE
Nancy Harris; Nancy Harris
Nancy Harris in OpenAIRE
Douglas Sheil; Douglas Sheil
Douglas Sheil in OpenAIRE
Marc Palahi; Marc Palahi
Marc Palahi in OpenAIRE
Gherardo Chirici; Gherardo Chirici
Gherardo Chirici in OpenAIRE
Manuel Boissière; Chip Fay;Manuel Boissière
Manuel Boissière in OpenAIRE
Johannes Reiche; Johannes Reiche
Johannes Reiche in OpenAIRE
Ruben Valbuena; Ruben Valbuena
Ruben Valbuena in OpenAIREhandle: 2158/1352700 , 10568/120412
Monitoring progress in the Glasgow 'Declaration on Forests' remains impossible without open sharing of data. Three actions are required if this declaration is to succeed.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/120412Data sources: Bielefeld Academic Search Engine (BASE)Flore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-022-01343-3&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/120412Data sources: Bielefeld Academic Search Engine (BASE)Flore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-022-01343-3&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:WT | Lancet Countdown: Trackin...WT| Lancet Countdown: Tracking Progress on Health and Climate ChangeTennison, I; Roschnik, S; Ashby, B; Boyd, R; Hamilton, I; Oreszczyn, T;
Owen, A; Owen, A
Owen, A in OpenAIRE
Romanello, M; Ruyssevelt, P; Sherman, JD; Smith, AZP; Steele, K; Watts, N; Eckelman, MJ;Romanello, M
Romanello, M in OpenAIREClimate change threatens to undermine the past 50 years of gains in public health. In response, the National Health Service (NHS) in England has been working since 2008 to quantify and reduce its carbon footprint. This Article presents the latest update to its greenhouse gas accounting, identifying interventions for mitigation efforts and describing an approach applicable to other health systems across the world.A hybrid model was used to quantify emissions within Scopes 1, 2, and 3 of the Greenhouse Gas Protocol, as well as patient and visitor travel emissions, from 1990 to 2019. This approach complements the broad coverage of top-down economic modelling with the high accuracy of bottom-up data wherever available. Available data were backcasted or forecasted to cover all years. To enable the identification of measures to reduce carbon emissions, results were disaggregated by organisation type.In 2019, the health service's emissions totalled 25 megatonnes of carbon dioxide equivalent, a reduction of 26% since 1990, and a decrease of 64% in the emissions per inpatient finished admission episode. Of the 2019 footprint, 62% came from the supply chain, 24% from the direct delivery of care, 10% from staff commute and patient and visitor travel, and 4% from private health and care services commissioned by the NHS.This work represents the longest and most comprehensive accounting of national health-care emissions globally, and underscores the importance of incorporating bottom-up data to improve the accuracy of top-down modelling and enabling detailed monitoring of progress as health systems act to reduce emissions.Wellcome Trust.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30271-0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30271-0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Lucian, Michela;
Merzari, Fabio; Gubert, Michele;Merzari, Fabio
Merzari, Fabio in OpenAIRE
Messineo, Antonio; +1 AuthorsMessineo, Antonio
Messineo, Antonio in OpenAIRELucian, Michela;
Merzari, Fabio; Gubert, Michele;Merzari, Fabio
Merzari, Fabio in OpenAIRE
Messineo, Antonio; Messineo, Antonio
Messineo, Antonio in OpenAIRE
Volpe, Maurizio; Volpe, Maurizio
Volpe, Maurizio in OpenAIREdoi: 10.3390/su13169343
Hydrothermal carbonization (HTC) provides an attractive alternative method for the treatment of high-moisture waste and, in particular, digested sludge. HTC could reduce the costs and environmental risks associated with sludge handling and management. Although it is recognized that the dewaterability of hydrochars produced from digested sludge, even at mild temperatures (180–190 °C), is highly improved with respect to the starting material, the filterability of HTC slurries for the recovery of the solid material (hydrochar) still represents a challenge. This study presents the results of an investigation into the filterability of agro-industrial digested sludge HTC slurries produced by a C-700 CarboremTM HTC industrial-scale plant. The filterability of HTC slurries, produced at 190 °C for 1 h, with the use of acid solutions of hydrochloric acid, sulfuric acid or citric acids, was investigated by using a semi-industrial filter press. The use of sulfuric acid or citric acid solutions, in particular, significantly improved the filterability of HTC slurries, reducing the time of filtration and residual moisture content. The acid treatment also promoted the migration of heavy metals and phosphorus (P) in the HTC filtrate solution. This study demonstrates that P can be recovered via the precipitation of struvite in high yields, recovering up to 85 wt% by mass of its initial P content.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9343/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9343/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors:
Helen M. Bothwell; Luke M. Evans; Erika I. Hersch‐Green;Helen M. Bothwell
Helen M. Bothwell in OpenAIRE
Scott A. Woolbright; +2 AuthorsScott A. Woolbright
Scott A. Woolbright in OpenAIRE
Helen M. Bothwell; Luke M. Evans; Erika I. Hersch‐Green;Helen M. Bothwell
Helen M. Bothwell in OpenAIRE
Scott A. Woolbright; Gerard J. Allan; Thomas G. Whitham;Scott A. Woolbright
Scott A. Woolbright in OpenAIREdoi: 10.1002/eap.2254
pmid: 33159398
AbstractEcological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population‐specific local adaptation), and all individuals share the same niche. Yet, these assumptions are violated for most broadly distributed species. Here, we incorporate genetic data from the widespread riparian tree species narrowleaf cottonwood (Populus angustifolia) to examine whether including intraspecific genetic variation can alter model performance and predictions of climate change impacts. We found that (1) P. angustifolia is differentiated into six genetic groups across its range from México to Canada and (2) different populations occupy distinct climate niches representing unique ecotypes. Comparing model discriminatory power, (3) all genetically informed ecological niche models (gENMs) outperformed the standard species‐level ENM (3–14% increase in AUC; 1–23% increase in pROC). Furthermore, (4) gENMs predicted large differences among ecotypes in both the direction and magnitude of responses to climate change and (5) revealed evidence of niche divergence, particularly for the Eastern Rocky Mountain ecotype. (6) Models also predicted progressively increasing fragmentation and decreasing overlap between ecotypes. Contact zones are often hotspots of diversity that are critical for supporting species' capacity to respond to present and future climate change, thus predicted reductions in connectivity among ecotypes is of conservation concern. We further examined the generality of our findings by comparing our model developed for a higher elevation Rocky Mountain species with a related desert riparian cottonwood, P. fremontii. Together our results suggest that incorporating intraspecific genetic information can improve model performance by addressing this important source of variance. gENMs bring an evolutionary perspective to niche modeling and provide a truly “adaptive management” approach to support conservation genetic management of species facing global change.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2254&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2254&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Funded by:MIURMIURAuthors:
Zarbà, Carla; Zarbà, Carla
Zarbà, Carla in OpenAIRE
Chinnici, Gaetano; Chinnici, Gaetano
Chinnici, Gaetano in OpenAIRE
La Via, Giovanni; La Via, Giovanni
La Via, Giovanni in OpenAIRE
Bracco, Salvatore; +2 AuthorsBracco, Salvatore
Bracco, Salvatore in OpenAIRE
Zarbà, Carla; Zarbà, Carla
Zarbà, Carla in OpenAIRE
Chinnici, Gaetano; Chinnici, Gaetano
Chinnici, Gaetano in OpenAIRE
La Via, Giovanni; La Via, Giovanni
La Via, Giovanni in OpenAIRE
Bracco, Salvatore; Bracco, Salvatore
Bracco, Salvatore in OpenAIRE
Pecorino, Biagio; Pecorino, Biagio
Pecorino, Biagio in OpenAIRE
D’Amico, Mario; D’Amico, Mario
D’Amico, Mario in OpenAIREdoi: 10.3390/su13158350
handle: 20.500.11769/510510
In the transition from linear production systems, unsustainable from the point of view of resources, to a model that finds strength in environmental, social and economic sustainability, the circular economy paradigm is the foundation that facilitates the planetary agro-ecological transition. The European Union has taken a number of steps (including the Circular Economy Package of Directives) shaping circularity as a wide-ranging driver measure involving many sectors. The paper intends to provide a regulatory framework on the current general situation regarding circularity in European Union, in order to extrapolate and give evidence to the aspects that intersect the agri-food sector. This is not only because they are poorly addressed in the literature, but also because there is a lack of regulatory instruments on the circular economy specifically addressing this area of interest. For this purpose, the analysis focuses on waste and residue/scrap management issues, recognized by law as by-products and end-of-waste status, as they are covered by circular economy legislation and as they can be applied to the agri-food sector. The latter allow the implementation of circularity strategies in the agri-food sector and, given the numerousness of production chains and the peculiarities of each of them, various regeneration and/or reuse processes of specific resources may be depicted. The intent is to provide useful knowledge on how to implement sustainable waste management, also proposing a concrete case on a by-product of olive oil processing, through which it is possible to highlight how the correct application of regulations favors the adoption of circular economic and management models in the firms involved, as well as informing the relevant economic operators on the possible profiles of legal liability that may arise from insufficient knowledge. Furthermore, this paper delves into the European Green Deal’s Strategy as it enriches the circular economy paradigm with new facets. NextGenerationEU and the National Recovery and Resilience Plan financially support this strategy in the aftermath of the socioeconomic crisis from COVID-19 in the EU Member States. This is in order to achieve the objective of achieving the agro-ecological transition.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/15/8350/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS - Università degli Studi di CataniaArticle . 2021License: CC BYData sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/15/8350/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS - Università degli Studi di CataniaArticle . 2021License: CC BYData sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Wiley Authors:
Olumide Olafasakin; Olumide Olafasakin
Olumide Olafasakin in OpenAIRE
Ellen M. Audia; Ellen M. Audia
Ellen M. Audia in OpenAIRE
Mark Mba‐Wright; Mark Mba‐Wright
Mark Mba‐Wright in OpenAIRE
John C. Tyndall; +1 AuthorsJohn C. Tyndall
John C. Tyndall in OpenAIRE
Olumide Olafasakin; Olumide Olafasakin
Olumide Olafasakin in OpenAIRE
Ellen M. Audia; Ellen M. Audia
Ellen M. Audia in OpenAIRE
Mark Mba‐Wright; Mark Mba‐Wright
Mark Mba‐Wright in OpenAIRE
John C. Tyndall; John C. Tyndall
John C. Tyndall in OpenAIRE
Lisa A. Schulte; Lisa A. Schulte
Lisa A. Schulte in OpenAIREdoi: 10.1111/gcbb.13164
handle: 20.500.12876/PrMBmVpz
AbstractRestoring native grassland vegetation can substantially improve ecosystem service outcomes from agricultural watersheds, but profitable pathways are needed to incentivize conversion from conventional crops. Given growing demand for renewable energy, using grassy biomass to produce biofuels provides a potential solution. We assessed the techno‐economic feasibility and life cycle outcomes of a “grass‐to‐gas” pathway that includes harvesting grassy (lignocellulosic) biomass for renewable natural gas (RNG) production through anaerobic digestion (AD), expanding on previous research that quantified ecosystem service and landowner financial outcomes of simulated grassland restoration in the Grand River Basin of Iowa and Missouri, United States. We found that the amount of RNG produced through AD of grassy biomass ranged 0.12–45.04 million gigajoules (GJ), and the net present value (NPV) of the RNG ranged −$97 to $422 million, depending on the combination of land use, productivity, and environmental credit scenarios. Positive NPVs are achieved with environmental credits for replacement of synthetic agricultural inputs with digestate and clean fuel production (e.g., USEPA D3 Renewable Identification Number, California Low Carbon Fuel Standard). Producing RNG from grassy biomass emits 15.1 g CO2‐eq/MJ, which compares favorably to the fossil natural gas value of 61.1 g CO2‐eq/MJ and exceeds the US Environmental Protection Agency's requirement for cellulosic biofuel. Overall, this study demonstrates opportunities and limitations to using grassy biomass from restored grasslands for sustainable RNG production.
GCB Bioenergy arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13164&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert GCB Bioenergy arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13164&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors:
Chinese, D.; Chinese, D.
Chinese, D. in OpenAIRE
Orrù, P. F.; Orrù, P. F.
Orrù, P. F. in OpenAIRE
Meneghetti, A.; Meneghetti, A.
Meneghetti, A. in OpenAIRE
Cortella, G.; +2 AuthorsCortella, G.
Cortella, G. in OpenAIRE
Chinese, D.; Chinese, D.
Chinese, D. in OpenAIRE
Orrù, P. F.; Orrù, P. F.
Orrù, P. F. in OpenAIRE
Meneghetti, A.; Meneghetti, A.
Meneghetti, A. in OpenAIRE
Cortella, G.; Giordano, L.; Benedetti, M.;Cortella, G.
Cortella, G. in OpenAIREhandle: 11390/1230305 , 11584/345209
The use of renewable energy, including solar process heating, and of efficient energy conversion technologies, have been considered in the literature to improve the energy performance of cheese production. However, most of the studies considered one energy source at a time and hardly accounted for the carbon emission impact. In this paper, a mixed integer linear programming model is developed and applied to a reference cheese factory in Italy to identify the least cost mix of solar thermal energy, natural gas-based trigeneration and symbiotic waste heat recovery from nearby industries via district heating that allows to achieve assigned carbon emission reduction goals. The study reveals that fossil fuel based trigeneration is economically attractive, leading to savings in annual equivalent systems costs of approximately 18–20% over the baseline configuration, but does not contribute to decarbonization, generally causing a percentage increase of carbon emissions of approximately 30% from the baseline configuration. In addition, the combination of cogeneration and waste heat recovery from a remote source (300 m up to 1000 m far away from the user) may be more cost-efficient than solar heating to meet a 30% carbon emission reduction constraint for most combinations of electricity and natural gas prices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124785&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124785&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
