- home
- Advanced Search
- Energy Research
- engineering and technology
- US
- Chinese Academy of Sciences
- Energy Research
- engineering and technology
- US
- Chinese Academy of Sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Cheng Wang; Qifang Chen; Zhineng Chen; Fuqiang Zou; Lingfeng Wang; Nian Liu;Abstract In order to maximize the operation profit while maintaining the service quality, an effective energy management scheme is highly needed for the Photovoltaic-assisted Charging Station (PVCS). Considering the uncertainty of Electric Vehicle (EV) charging demand and PV power output, it will be challenging to determine the charging power for EVs to make informed real-time decisions. In this study, an online energy management method leveraging both offline optimization and online learning is proposed. In order to maximize the self-consumption of Photovoltaic (PV) energy and decide the power supplied from the power grid with Time-of-Use (TOU) pricing, here online learning is coupled with the rule-based decision-making to obtain a real-time online algorithm. The knowledge base for online learning is derived and updated from the results of offline optimization after every operation day. The PVCS located at workplace parking lots is used as an example to test the proposed method. The simulation results show that the method can be implemented without the information on future PV power and charging demand. The obtained results are close to the optimal results from offline optimization.
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Cheng Wang; Qifang Chen; Zhineng Chen; Fuqiang Zou; Lingfeng Wang; Nian Liu;Abstract In order to maximize the operation profit while maintaining the service quality, an effective energy management scheme is highly needed for the Photovoltaic-assisted Charging Station (PVCS). Considering the uncertainty of Electric Vehicle (EV) charging demand and PV power output, it will be challenging to determine the charging power for EVs to make informed real-time decisions. In this study, an online energy management method leveraging both offline optimization and online learning is proposed. In order to maximize the self-consumption of Photovoltaic (PV) energy and decide the power supplied from the power grid with Time-of-Use (TOU) pricing, here online learning is coupled with the rule-based decision-making to obtain a real-time online algorithm. The knowledge base for online learning is derived and updated from the results of offline optimization after every operation day. The PVCS located at workplace parking lots is used as an example to test the proposed method. The simulation results show that the method can be implemented without the information on future PV power and charging demand. The obtained results are close to the optimal results from offline optimization.
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhiwen Chen; Mingfeng Wang; Enchen Jiang; Donghai Wang; Ke Zhang; Yongzhi Ren; Yang Jiang;pmid: 30104012
Pyrolysis, one of the most promising thermal conversion technologies for biomass conversion, can decompose biomass into solid bio-char, liquid bio-oil, and combustible gas to meet different energy needs. However, pyrolysis efficiency and product quality are not as good as expected when raw biomass is used owing to the properties of raw biomass (e.g., high moisture, oxygen, and alkali metal contents). Torrefaction is an emerging biomass pretreatment technology that can improve the physical and chemical properties of raw biomass, and pyrolysis efficiency and final product quality can therefore be improved by using torrefied biomass. We review several advantages of pyrolysis of torrefied biomass in terms of the conversion process and final product quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhiwen Chen; Mingfeng Wang; Enchen Jiang; Donghai Wang; Ke Zhang; Yongzhi Ren; Yang Jiang;pmid: 30104012
Pyrolysis, one of the most promising thermal conversion technologies for biomass conversion, can decompose biomass into solid bio-char, liquid bio-oil, and combustible gas to meet different energy needs. However, pyrolysis efficiency and product quality are not as good as expected when raw biomass is used owing to the properties of raw biomass (e.g., high moisture, oxygen, and alkali metal contents). Torrefaction is an emerging biomass pretreatment technology that can improve the physical and chemical properties of raw biomass, and pyrolysis efficiency and final product quality can therefore be improved by using torrefied biomass. We review several advantages of pyrolysis of torrefied biomass in terms of the conversion process and final product quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ningyuan Zhu; Sichu Wang; Cilai Tang; Pengfei Duan; Lunguang Yao; Jun Tang; Po Keung Wong; Taicheng An; Dionysios D. Dionysiou; Yonghong Wu;pmid: 30614685
Researchers are devoting great effort to combine photocatalytic nanoparticles (PNPs) with biological processes to create efficient environmental purification technologies (i.e., intimately coupled photobiocatalysis). However, little information is available to illuminate the responses of multispecies microbial aggregates against PNP exposure. Periphytic biofilm, as a model multispecies microbial aggregate, was exposed to three different PNPs (CdS, TiO2, and Fe2O3) under xenon lamp irradiation. There were no obvious toxic effects of PNP exposure on periphytic biofilm as biomass, chlorophyll content, and ATPase activity were not negatively impacted. Enhanced production of extracellular polymetric substances (EPS) is the most important protection mechanism of periphytic biofilm against PNPs exposure. Although PNP exposure produced extracellular superoxide radicals and caused intracellular reactive oxygen species (ROS) accumulation in periphytic biofilm, the interaction between EPS and PNPs could mitigate production of ROS while superoxide dismutase could alleviate biotic ROS accumulation in periphytic biofilm. The periphytic biofilms changed their community composition in the presence of PNPs by increasing the relative abundance of phototrophic and high nutrient metabolic microorganisms (families Chlamydomonadaceae, Cyanobacteriacea, Sphingobacteriales, and Xanthomonadaceae). This study provides insight into the protection mechanisms of microbial aggregates against simultaneous photogenerated and nanoparticle toxicity from PNPs.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ningyuan Zhu; Sichu Wang; Cilai Tang; Pengfei Duan; Lunguang Yao; Jun Tang; Po Keung Wong; Taicheng An; Dionysios D. Dionysiou; Yonghong Wu;pmid: 30614685
Researchers are devoting great effort to combine photocatalytic nanoparticles (PNPs) with biological processes to create efficient environmental purification technologies (i.e., intimately coupled photobiocatalysis). However, little information is available to illuminate the responses of multispecies microbial aggregates against PNP exposure. Periphytic biofilm, as a model multispecies microbial aggregate, was exposed to three different PNPs (CdS, TiO2, and Fe2O3) under xenon lamp irradiation. There were no obvious toxic effects of PNP exposure on periphytic biofilm as biomass, chlorophyll content, and ATPase activity were not negatively impacted. Enhanced production of extracellular polymetric substances (EPS) is the most important protection mechanism of periphytic biofilm against PNPs exposure. Although PNP exposure produced extracellular superoxide radicals and caused intracellular reactive oxygen species (ROS) accumulation in periphytic biofilm, the interaction between EPS and PNPs could mitigate production of ROS while superoxide dismutase could alleviate biotic ROS accumulation in periphytic biofilm. The periphytic biofilms changed their community composition in the presence of PNPs by increasing the relative abundance of phototrophic and high nutrient metabolic microorganisms (families Chlamydomonadaceae, Cyanobacteriacea, Sphingobacteriales, and Xanthomonadaceae). This study provides insight into the protection mechanisms of microbial aggregates against simultaneous photogenerated and nanoparticle toxicity from PNPs.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Haihong Wu; Min Zeng; Zhiyun Li; Xiang Zhu; Chengcheng Tian; Chungu Xia; Lin He; Sheng Dai;doi: 10.1039/c8se00362a
A dual-template strategy for facile preparation of a bifunctional oxygen electrocatalyst for high-performance rechargeable zinc–air batteries has been reported.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Haihong Wu; Min Zeng; Zhiyun Li; Xiang Zhu; Chengcheng Tian; Chungu Xia; Lin He; Sheng Dai;doi: 10.1039/c8se00362a
A dual-template strategy for facile preparation of a bifunctional oxygen electrocatalyst for high-performance rechargeable zinc–air batteries has been reported.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Zhanshan, Wang; Jiayi, Yan; Puzhen, Zhang; Zhigang, Li; Chen, Guo; Kai, Wu; Xiaoqian, Li; Xiaojing, Zhu; Zhaobin, Sun; Yongjie, Wei;Abstract To clarify the chemical characteristics, source contributions, and health risks of pollution events associated with high PM2.5 in typical industrial areas of North China, manual sampling and analysis of PM2.5 were conducted in the spring, summer, autumn, and winter of 2019 in Pingyin County, Jinan City, Shandong Province. The results showed that the total concentration of 29 components in PM2.5 was 53.4 μg·m-3; the largest contribution was from the NO3- ion, at 14.6 ± 14.2 μg·m-3, followed by organic carbon (OC), SO42-, and NH4+, with concentrations of 9.3 ± 5.5, 9.1 ± 6.4, and 8.1 ± 6.8 μg·m-3, respectively. The concentrations of OC, NO3-, and SO42- were highest in winter and lowest in summer, whereas the NH4+ concentration was highest in winter and lowest in spring. Typical heavy metals had higher concentrations in autumn and winter, and lower concentrations in spring and summer. The annual average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were 0.30 ± 0.14 and 0.21 ± 0.12, respectively, with the highest SO2 emission and conversion rates in winter, resulting in the SO42- concentration being highest in winter. Although the emission rate of SO2 was low in summer, its conversion rate was high. In winter and autumn, NORs were significantly higher than in spring and summer, and a higher NOR in autumn contributed to significant elevation of the NO3- concentration in autumn relative to spring and summer. The average concentration of secondary organic carbon in 2019 was 2.8±1.9 μg·m-3, and it comprised approximately 30% of total OC. The health risk assessment for typical heavy metals showed that Pb poses a potential carcinogenic risk for adults, whereas As may pose a carcinogenic risk for adults, children, and adolescents. Positive matrix factorization analysis indicated that coal-burning emissions contributed the largest fraction of PM2.5, accounting for 35.9% of the total. The contribution of automotive emissions is similar to that of coal, at 32.1%. The third-largest contributor was industrial sources, which accounted for 17.2%. The contributions of dust and other emissions sources to PM2.5 were 8.4% and 6.4%, respectively.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Zhanshan, Wang; Jiayi, Yan; Puzhen, Zhang; Zhigang, Li; Chen, Guo; Kai, Wu; Xiaoqian, Li; Xiaojing, Zhu; Zhaobin, Sun; Yongjie, Wei;Abstract To clarify the chemical characteristics, source contributions, and health risks of pollution events associated with high PM2.5 in typical industrial areas of North China, manual sampling and analysis of PM2.5 were conducted in the spring, summer, autumn, and winter of 2019 in Pingyin County, Jinan City, Shandong Province. The results showed that the total concentration of 29 components in PM2.5 was 53.4 μg·m-3; the largest contribution was from the NO3- ion, at 14.6 ± 14.2 μg·m-3, followed by organic carbon (OC), SO42-, and NH4+, with concentrations of 9.3 ± 5.5, 9.1 ± 6.4, and 8.1 ± 6.8 μg·m-3, respectively. The concentrations of OC, NO3-, and SO42- were highest in winter and lowest in summer, whereas the NH4+ concentration was highest in winter and lowest in spring. Typical heavy metals had higher concentrations in autumn and winter, and lower concentrations in spring and summer. The annual average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were 0.30 ± 0.14 and 0.21 ± 0.12, respectively, with the highest SO2 emission and conversion rates in winter, resulting in the SO42- concentration being highest in winter. Although the emission rate of SO2 was low in summer, its conversion rate was high. In winter and autumn, NORs were significantly higher than in spring and summer, and a higher NOR in autumn contributed to significant elevation of the NO3- concentration in autumn relative to spring and summer. The average concentration of secondary organic carbon in 2019 was 2.8±1.9 μg·m-3, and it comprised approximately 30% of total OC. The health risk assessment for typical heavy metals showed that Pb poses a potential carcinogenic risk for adults, whereas As may pose a carcinogenic risk for adults, children, and adolescents. Positive matrix factorization analysis indicated that coal-burning emissions contributed the largest fraction of PM2.5, accounting for 35.9% of the total. The contribution of automotive emissions is similar to that of coal, at 32.1%. The third-largest contributor was industrial sources, which accounted for 17.2%. The contributions of dust and other emissions sources to PM2.5 were 8.4% and 6.4%, respectively.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SingaporePublisher:American Chemical Society (ACS) Shaoxin Li; Shuo Deng; Ran Xu; Di Liu; Yang Nan; Zhiwei Zhang; Yikui Gao; Haifei Lv; Min Li; Qing Zhang; Jie Wang; Zhong Lin Wang;handle: 10356/163351
As an energy harvester that converts mechanical power into electrical energy, a triboelectric nanogenerator (TENG) with a pair of metallic and insulating electrodes can generate only the displacement current (Idis) in the electrodes, whereas a chemical potential difference generator (CPG) with a pair of semiconducting or/and metallic electrodes can generate both Idis and conduction current (Icon). Considering the effects of motion parameters on Idis and Icon is important for harvesting different mechanical energies in practical scenarios; the output characteristics of CPGs and traditional TENGs under different external resistance (R), contact-separation frequency (f), and maximum separation distance (xm) were systematically studied for the first time in this work. More interestingly, a direct current (DC) output can be generated directly by CPGs under R > 10 Mω or f > 100 Hz. This work not only provides a guideline for collecting different mechanical energies but also promotes the development of CPGs as an energy harvester and self-powered vibration sensor in the semiconductor industry. Agency for Science, Technology and Research (A*STAR) Ministry of Education (MOE) This project is financially supported by National Key Research and Development Program of China for Young Scientists (2021YFF0603500), National Natural Science Foundation of China (11974266 and U21A20147), Fundamental Research Funds for the Central Universities (WUT:2022IVA061, E1E46802), A*STAR AME IRG Grant SERC A1983c0027, and MOE AcRF Tier2 (2018-T2-2-005), Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SingaporePublisher:American Chemical Society (ACS) Shaoxin Li; Shuo Deng; Ran Xu; Di Liu; Yang Nan; Zhiwei Zhang; Yikui Gao; Haifei Lv; Min Li; Qing Zhang; Jie Wang; Zhong Lin Wang;handle: 10356/163351
As an energy harvester that converts mechanical power into electrical energy, a triboelectric nanogenerator (TENG) with a pair of metallic and insulating electrodes can generate only the displacement current (Idis) in the electrodes, whereas a chemical potential difference generator (CPG) with a pair of semiconducting or/and metallic electrodes can generate both Idis and conduction current (Icon). Considering the effects of motion parameters on Idis and Icon is important for harvesting different mechanical energies in practical scenarios; the output characteristics of CPGs and traditional TENGs under different external resistance (R), contact-separation frequency (f), and maximum separation distance (xm) were systematically studied for the first time in this work. More interestingly, a direct current (DC) output can be generated directly by CPGs under R > 10 Mω or f > 100 Hz. This work not only provides a guideline for collecting different mechanical energies but also promotes the development of CPGs as an energy harvester and self-powered vibration sensor in the semiconductor industry. Agency for Science, Technology and Research (A*STAR) Ministry of Education (MOE) This project is financially supported by National Key Research and Development Program of China for Young Scientists (2021YFF0603500), National Natural Science Foundation of China (11974266 and U21A20147), Fundamental Research Funds for the Central Universities (WUT:2022IVA061, E1E46802), A*STAR AME IRG Grant SERC A1983c0027, and MOE AcRF Tier2 (2018-T2-2-005), Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Yinpeng Liu; Yaling Chen;With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Yinpeng Liu; Yaling Chen;With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Xiulan Huai; Fengquan Zhong; Xuejun Fan; Jun Cai; Xunfeng Li; Zhixiong Guo;Regenerative cooling of aviation kerosene plays an important role for thermal protection of scramjet engines. Since the thermophysical properties of kerosene change acutely near the pseudo-critical point, heat convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China RP-3 aviation kerosene at a supercritical pressure are numerically studied using the finite volume method. The RNG k-epsilon two-equation turbulence model with enhanced wall treatment is considered. The heat transfer with different constant wall heat fluxes is analyzed, and a correlation of heat transfer enhancement is obtained. The effect of mass flow rate on the convective heat transfer with a varying wall heat flux condition at the supercritical pressure is also investigated. Because of the special thermophysical properties of the kerosene at supercritical pressure, the Nussult number is only related to the Reynolds number after the heat transfer is enhanced. The simulation results are compared with the empirical formulas in the literature. (C) 2011 Elsevier Ltd. All rights reserved.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Xiulan Huai; Fengquan Zhong; Xuejun Fan; Jun Cai; Xunfeng Li; Zhixiong Guo;Regenerative cooling of aviation kerosene plays an important role for thermal protection of scramjet engines. Since the thermophysical properties of kerosene change acutely near the pseudo-critical point, heat convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China RP-3 aviation kerosene at a supercritical pressure are numerically studied using the finite volume method. The RNG k-epsilon two-equation turbulence model with enhanced wall treatment is considered. The heat transfer with different constant wall heat fluxes is analyzed, and a correlation of heat transfer enhancement is obtained. The effect of mass flow rate on the convective heat transfer with a varying wall heat flux condition at the supercritical pressure is also investigated. Because of the special thermophysical properties of the kerosene at supercritical pressure, the Nussult number is only related to the Reynolds number after the heat transfer is enhanced. The simulation results are compared with the empirical formulas in the literature. (C) 2011 Elsevier Ltd. All rights reserved.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Xiuli Wang; Zhou Yang; Yucheng Liu; Xu Zhang; Xu Zhang; Xu Zhang; Xuejie Zhu; Jianbo Li; Aram Amassian; Tianqi Niu; Dong Yang; Ruipeng Li; Rahim Munir; Xiaodong Ren; Shengzhong Liu; Shengzhong Liu; Bin Liu; Detlef-M. Smilgies; Kui Zhao;doi: 10.1039/c7ee01145h
handle: 10754/626632
Cs+doping into 2D (BA)2(MA)3Pb4I13perovskites boosts power conversion efficiency (PCE) to 13.7% and yields superior humidity and thermal stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu523 citations 523 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Xiuli Wang; Zhou Yang; Yucheng Liu; Xu Zhang; Xu Zhang; Xu Zhang; Xuejie Zhu; Jianbo Li; Aram Amassian; Tianqi Niu; Dong Yang; Ruipeng Li; Rahim Munir; Xiaodong Ren; Shengzhong Liu; Shengzhong Liu; Bin Liu; Detlef-M. Smilgies; Kui Zhao;doi: 10.1039/c7ee01145h
handle: 10754/626632
Cs+doping into 2D (BA)2(MA)3Pb4I13perovskites boosts power conversion efficiency (PCE) to 13.7% and yields superior humidity and thermal stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu523 citations 523 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Cheng Wang; Qifang Chen; Zhineng Chen; Fuqiang Zou; Lingfeng Wang; Nian Liu;Abstract In order to maximize the operation profit while maintaining the service quality, an effective energy management scheme is highly needed for the Photovoltaic-assisted Charging Station (PVCS). Considering the uncertainty of Electric Vehicle (EV) charging demand and PV power output, it will be challenging to determine the charging power for EVs to make informed real-time decisions. In this study, an online energy management method leveraging both offline optimization and online learning is proposed. In order to maximize the self-consumption of Photovoltaic (PV) energy and decide the power supplied from the power grid with Time-of-Use (TOU) pricing, here online learning is coupled with the rule-based decision-making to obtain a real-time online algorithm. The knowledge base for online learning is derived and updated from the results of offline optimization after every operation day. The PVCS located at workplace parking lots is used as an example to test the proposed method. The simulation results show that the method can be implemented without the information on future PV power and charging demand. The obtained results are close to the optimal results from offline optimization.
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Cheng Wang; Qifang Chen; Zhineng Chen; Fuqiang Zou; Lingfeng Wang; Nian Liu;Abstract In order to maximize the operation profit while maintaining the service quality, an effective energy management scheme is highly needed for the Photovoltaic-assisted Charging Station (PVCS). Considering the uncertainty of Electric Vehicle (EV) charging demand and PV power output, it will be challenging to determine the charging power for EVs to make informed real-time decisions. In this study, an online energy management method leveraging both offline optimization and online learning is proposed. In order to maximize the self-consumption of Photovoltaic (PV) energy and decide the power supplied from the power grid with Time-of-Use (TOU) pricing, here online learning is coupled with the rule-based decision-making to obtain a real-time online algorithm. The knowledge base for online learning is derived and updated from the results of offline optimization after every operation day. The PVCS located at workplace parking lots is used as an example to test the proposed method. The simulation results show that the method can be implemented without the information on future PV power and charging demand. The obtained results are close to the optimal results from offline optimization.
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhiwen Chen; Mingfeng Wang; Enchen Jiang; Donghai Wang; Ke Zhang; Yongzhi Ren; Yang Jiang;pmid: 30104012
Pyrolysis, one of the most promising thermal conversion technologies for biomass conversion, can decompose biomass into solid bio-char, liquid bio-oil, and combustible gas to meet different energy needs. However, pyrolysis efficiency and product quality are not as good as expected when raw biomass is used owing to the properties of raw biomass (e.g., high moisture, oxygen, and alkali metal contents). Torrefaction is an emerging biomass pretreatment technology that can improve the physical and chemical properties of raw biomass, and pyrolysis efficiency and final product quality can therefore be improved by using torrefied biomass. We review several advantages of pyrolysis of torrefied biomass in terms of the conversion process and final product quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhiwen Chen; Mingfeng Wang; Enchen Jiang; Donghai Wang; Ke Zhang; Yongzhi Ren; Yang Jiang;pmid: 30104012
Pyrolysis, one of the most promising thermal conversion technologies for biomass conversion, can decompose biomass into solid bio-char, liquid bio-oil, and combustible gas to meet different energy needs. However, pyrolysis efficiency and product quality are not as good as expected when raw biomass is used owing to the properties of raw biomass (e.g., high moisture, oxygen, and alkali metal contents). Torrefaction is an emerging biomass pretreatment technology that can improve the physical and chemical properties of raw biomass, and pyrolysis efficiency and final product quality can therefore be improved by using torrefied biomass. We review several advantages of pyrolysis of torrefied biomass in terms of the conversion process and final product quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2018.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ningyuan Zhu; Sichu Wang; Cilai Tang; Pengfei Duan; Lunguang Yao; Jun Tang; Po Keung Wong; Taicheng An; Dionysios D. Dionysiou; Yonghong Wu;pmid: 30614685
Researchers are devoting great effort to combine photocatalytic nanoparticles (PNPs) with biological processes to create efficient environmental purification technologies (i.e., intimately coupled photobiocatalysis). However, little information is available to illuminate the responses of multispecies microbial aggregates against PNP exposure. Periphytic biofilm, as a model multispecies microbial aggregate, was exposed to three different PNPs (CdS, TiO2, and Fe2O3) under xenon lamp irradiation. There were no obvious toxic effects of PNP exposure on periphytic biofilm as biomass, chlorophyll content, and ATPase activity were not negatively impacted. Enhanced production of extracellular polymetric substances (EPS) is the most important protection mechanism of periphytic biofilm against PNPs exposure. Although PNP exposure produced extracellular superoxide radicals and caused intracellular reactive oxygen species (ROS) accumulation in periphytic biofilm, the interaction between EPS and PNPs could mitigate production of ROS while superoxide dismutase could alleviate biotic ROS accumulation in periphytic biofilm. The periphytic biofilms changed their community composition in the presence of PNPs by increasing the relative abundance of phototrophic and high nutrient metabolic microorganisms (families Chlamydomonadaceae, Cyanobacteriacea, Sphingobacteriales, and Xanthomonadaceae). This study provides insight into the protection mechanisms of microbial aggregates against simultaneous photogenerated and nanoparticle toxicity from PNPs.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ningyuan Zhu; Sichu Wang; Cilai Tang; Pengfei Duan; Lunguang Yao; Jun Tang; Po Keung Wong; Taicheng An; Dionysios D. Dionysiou; Yonghong Wu;pmid: 30614685
Researchers are devoting great effort to combine photocatalytic nanoparticles (PNPs) with biological processes to create efficient environmental purification technologies (i.e., intimately coupled photobiocatalysis). However, little information is available to illuminate the responses of multispecies microbial aggregates against PNP exposure. Periphytic biofilm, as a model multispecies microbial aggregate, was exposed to three different PNPs (CdS, TiO2, and Fe2O3) under xenon lamp irradiation. There were no obvious toxic effects of PNP exposure on periphytic biofilm as biomass, chlorophyll content, and ATPase activity were not negatively impacted. Enhanced production of extracellular polymetric substances (EPS) is the most important protection mechanism of periphytic biofilm against PNPs exposure. Although PNP exposure produced extracellular superoxide radicals and caused intracellular reactive oxygen species (ROS) accumulation in periphytic biofilm, the interaction between EPS and PNPs could mitigate production of ROS while superoxide dismutase could alleviate biotic ROS accumulation in periphytic biofilm. The periphytic biofilms changed their community composition in the presence of PNPs by increasing the relative abundance of phototrophic and high nutrient metabolic microorganisms (families Chlamydomonadaceae, Cyanobacteriacea, Sphingobacteriales, and Xanthomonadaceae). This study provides insight into the protection mechanisms of microbial aggregates against simultaneous photogenerated and nanoparticle toxicity from PNPs.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b04923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Haihong Wu; Min Zeng; Zhiyun Li; Xiang Zhu; Chengcheng Tian; Chungu Xia; Lin He; Sheng Dai;doi: 10.1039/c8se00362a
A dual-template strategy for facile preparation of a bifunctional oxygen electrocatalyst for high-performance rechargeable zinc–air batteries has been reported.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Haihong Wu; Min Zeng; Zhiyun Li; Xiang Zhu; Chengcheng Tian; Chungu Xia; Lin He; Sheng Dai;doi: 10.1039/c8se00362a
A dual-template strategy for facile preparation of a bifunctional oxygen electrocatalyst for high-performance rechargeable zinc–air batteries has been reported.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00362a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Zhanshan, Wang; Jiayi, Yan; Puzhen, Zhang; Zhigang, Li; Chen, Guo; Kai, Wu; Xiaoqian, Li; Xiaojing, Zhu; Zhaobin, Sun; Yongjie, Wei;Abstract To clarify the chemical characteristics, source contributions, and health risks of pollution events associated with high PM2.5 in typical industrial areas of North China, manual sampling and analysis of PM2.5 were conducted in the spring, summer, autumn, and winter of 2019 in Pingyin County, Jinan City, Shandong Province. The results showed that the total concentration of 29 components in PM2.5 was 53.4 μg·m-3; the largest contribution was from the NO3- ion, at 14.6 ± 14.2 μg·m-3, followed by organic carbon (OC), SO42-, and NH4+, with concentrations of 9.3 ± 5.5, 9.1 ± 6.4, and 8.1 ± 6.8 μg·m-3, respectively. The concentrations of OC, NO3-, and SO42- were highest in winter and lowest in summer, whereas the NH4+ concentration was highest in winter and lowest in spring. Typical heavy metals had higher concentrations in autumn and winter, and lower concentrations in spring and summer. The annual average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were 0.30 ± 0.14 and 0.21 ± 0.12, respectively, with the highest SO2 emission and conversion rates in winter, resulting in the SO42- concentration being highest in winter. Although the emission rate of SO2 was low in summer, its conversion rate was high. In winter and autumn, NORs were significantly higher than in spring and summer, and a higher NOR in autumn contributed to significant elevation of the NO3- concentration in autumn relative to spring and summer. The average concentration of secondary organic carbon in 2019 was 2.8±1.9 μg·m-3, and it comprised approximately 30% of total OC. The health risk assessment for typical heavy metals showed that Pb poses a potential carcinogenic risk for adults, whereas As may pose a carcinogenic risk for adults, children, and adolescents. Positive matrix factorization analysis indicated that coal-burning emissions contributed the largest fraction of PM2.5, accounting for 35.9% of the total. The contribution of automotive emissions is similar to that of coal, at 32.1%. The third-largest contributor was industrial sources, which accounted for 17.2%. The contributions of dust and other emissions sources to PM2.5 were 8.4% and 6.4%, respectively.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Zhanshan, Wang; Jiayi, Yan; Puzhen, Zhang; Zhigang, Li; Chen, Guo; Kai, Wu; Xiaoqian, Li; Xiaojing, Zhu; Zhaobin, Sun; Yongjie, Wei;Abstract To clarify the chemical characteristics, source contributions, and health risks of pollution events associated with high PM2.5 in typical industrial areas of North China, manual sampling and analysis of PM2.5 were conducted in the spring, summer, autumn, and winter of 2019 in Pingyin County, Jinan City, Shandong Province. The results showed that the total concentration of 29 components in PM2.5 was 53.4 μg·m-3; the largest contribution was from the NO3- ion, at 14.6 ± 14.2 μg·m-3, followed by organic carbon (OC), SO42-, and NH4+, with concentrations of 9.3 ± 5.5, 9.1 ± 6.4, and 8.1 ± 6.8 μg·m-3, respectively. The concentrations of OC, NO3-, and SO42- were highest in winter and lowest in summer, whereas the NH4+ concentration was highest in winter and lowest in spring. Typical heavy metals had higher concentrations in autumn and winter, and lower concentrations in spring and summer. The annual average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were 0.30 ± 0.14 and 0.21 ± 0.12, respectively, with the highest SO2 emission and conversion rates in winter, resulting in the SO42- concentration being highest in winter. Although the emission rate of SO2 was low in summer, its conversion rate was high. In winter and autumn, NORs were significantly higher than in spring and summer, and a higher NOR in autumn contributed to significant elevation of the NO3- concentration in autumn relative to spring and summer. The average concentration of secondary organic carbon in 2019 was 2.8±1.9 μg·m-3, and it comprised approximately 30% of total OC. The health risk assessment for typical heavy metals showed that Pb poses a potential carcinogenic risk for adults, whereas As may pose a carcinogenic risk for adults, children, and adolescents. Positive matrix factorization analysis indicated that coal-burning emissions contributed the largest fraction of PM2.5, accounting for 35.9% of the total. The contribution of automotive emissions is similar to that of coal, at 32.1%. The third-largest contributor was industrial sources, which accounted for 17.2%. The contributions of dust and other emissions sources to PM2.5 were 8.4% and 6.4%, respectively.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SingaporePublisher:American Chemical Society (ACS) Shaoxin Li; Shuo Deng; Ran Xu; Di Liu; Yang Nan; Zhiwei Zhang; Yikui Gao; Haifei Lv; Min Li; Qing Zhang; Jie Wang; Zhong Lin Wang;handle: 10356/163351
As an energy harvester that converts mechanical power into electrical energy, a triboelectric nanogenerator (TENG) with a pair of metallic and insulating electrodes can generate only the displacement current (Idis) in the electrodes, whereas a chemical potential difference generator (CPG) with a pair of semiconducting or/and metallic electrodes can generate both Idis and conduction current (Icon). Considering the effects of motion parameters on Idis and Icon is important for harvesting different mechanical energies in practical scenarios; the output characteristics of CPGs and traditional TENGs under different external resistance (R), contact-separation frequency (f), and maximum separation distance (xm) were systematically studied for the first time in this work. More interestingly, a direct current (DC) output can be generated directly by CPGs under R > 10 Mω or f > 100 Hz. This work not only provides a guideline for collecting different mechanical energies but also promotes the development of CPGs as an energy harvester and self-powered vibration sensor in the semiconductor industry. Agency for Science, Technology and Research (A*STAR) Ministry of Education (MOE) This project is financially supported by National Key Research and Development Program of China for Young Scientists (2021YFF0603500), National Natural Science Foundation of China (11974266 and U21A20147), Fundamental Research Funds for the Central Universities (WUT:2022IVA061, E1E46802), A*STAR AME IRG Grant SERC A1983c0027, and MOE AcRF Tier2 (2018-T2-2-005), Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SingaporePublisher:American Chemical Society (ACS) Shaoxin Li; Shuo Deng; Ran Xu; Di Liu; Yang Nan; Zhiwei Zhang; Yikui Gao; Haifei Lv; Min Li; Qing Zhang; Jie Wang; Zhong Lin Wang;handle: 10356/163351
As an energy harvester that converts mechanical power into electrical energy, a triboelectric nanogenerator (TENG) with a pair of metallic and insulating electrodes can generate only the displacement current (Idis) in the electrodes, whereas a chemical potential difference generator (CPG) with a pair of semiconducting or/and metallic electrodes can generate both Idis and conduction current (Icon). Considering the effects of motion parameters on Idis and Icon is important for harvesting different mechanical energies in practical scenarios; the output characteristics of CPGs and traditional TENGs under different external resistance (R), contact-separation frequency (f), and maximum separation distance (xm) were systematically studied for the first time in this work. More interestingly, a direct current (DC) output can be generated directly by CPGs under R > 10 Mω or f > 100 Hz. This work not only provides a guideline for collecting different mechanical energies but also promotes the development of CPGs as an energy harvester and self-powered vibration sensor in the semiconductor industry. Agency for Science, Technology and Research (A*STAR) Ministry of Education (MOE) This project is financially supported by National Key Research and Development Program of China for Young Scientists (2021YFF0603500), National Natural Science Foundation of China (11974266 and U21A20147), Fundamental Research Funds for the Central Universities (WUT:2022IVA061, E1E46802), A*STAR AME IRG Grant SERC A1983c0027, and MOE AcRF Tier2 (2018-T2-2-005), Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Yinpeng Liu; Yaling Chen;With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Yinpeng Liu; Yaling Chen;With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Xiulan Huai; Fengquan Zhong; Xuejun Fan; Jun Cai; Xunfeng Li; Zhixiong Guo;Regenerative cooling of aviation kerosene plays an important role for thermal protection of scramjet engines. Since the thermophysical properties of kerosene change acutely near the pseudo-critical point, heat convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China RP-3 aviation kerosene at a supercritical pressure are numerically studied using the finite volume method. The RNG k-epsilon two-equation turbulence model with enhanced wall treatment is considered. The heat transfer with different constant wall heat fluxes is analyzed, and a correlation of heat transfer enhancement is obtained. The effect of mass flow rate on the convective heat transfer with a varying wall heat flux condition at the supercritical pressure is also investigated. Because of the special thermophysical properties of the kerosene at supercritical pressure, the Nussult number is only related to the Reynolds number after the heat transfer is enhanced. The simulation results are compared with the empirical formulas in the literature. (C) 2011 Elsevier Ltd. All rights reserved.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Xiulan Huai; Fengquan Zhong; Xuejun Fan; Jun Cai; Xunfeng Li; Zhixiong Guo;Regenerative cooling of aviation kerosene plays an important role for thermal protection of scramjet engines. Since the thermophysical properties of kerosene change acutely near the pseudo-critical point, heat convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China RP-3 aviation kerosene at a supercritical pressure are numerically studied using the finite volume method. The RNG k-epsilon two-equation turbulence model with enhanced wall treatment is considered. The heat transfer with different constant wall heat fluxes is analyzed, and a correlation of heat transfer enhancement is obtained. The effect of mass flow rate on the convective heat transfer with a varying wall heat flux condition at the supercritical pressure is also investigated. Because of the special thermophysical properties of the kerosene at supercritical pressure, the Nussult number is only related to the Reynolds number after the heat transfer is enhanced. The simulation results are compared with the empirical formulas in the literature. (C) 2011 Elsevier Ltd. All rights reserved.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Xiuli Wang; Zhou Yang; Yucheng Liu; Xu Zhang; Xu Zhang; Xu Zhang; Xuejie Zhu; Jianbo Li; Aram Amassian; Tianqi Niu; Dong Yang; Ruipeng Li; Rahim Munir; Xiaodong Ren; Shengzhong Liu; Shengzhong Liu; Bin Liu; Detlef-M. Smilgies; Kui Zhao;doi: 10.1039/c7ee01145h
handle: 10754/626632
Cs+doping into 2D (BA)2(MA)3Pb4I13perovskites boosts power conversion efficiency (PCE) to 13.7% and yields superior humidity and thermal stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu523 citations 523 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Xiuli Wang; Zhou Yang; Yucheng Liu; Xu Zhang; Xu Zhang; Xu Zhang; Xuejie Zhu; Jianbo Li; Aram Amassian; Tianqi Niu; Dong Yang; Ruipeng Li; Rahim Munir; Xiaodong Ren; Shengzhong Liu; Shengzhong Liu; Bin Liu; Detlef-M. Smilgies; Kui Zhao;doi: 10.1039/c7ee01145h
handle: 10754/626632
Cs+doping into 2D (BA)2(MA)3Pb4I13perovskites boosts power conversion efficiency (PCE) to 13.7% and yields superior humidity and thermal stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu523 citations 523 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee01145h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu