- home
- Advanced Search
- Energy Research
- US
- Energy Research
- US
description Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Carol Hamelink; David Vaudry; Robert L. Eskay; Bruno J. Gonzalez; Lee E. Eiden; Ruslan Damadzic;The rodent cerebellum is richly supplied with PACAPergic innervation. Exogenous pituitary adenylate cyclase-activating polypeptide (PACAP) increases cerebellar granule cell survival and differentiation in culture, and enhances the number of neuroblasts in the molecular and internal granule cell layers (IGL) when injected postnatally into the cerebellum in vivo. Here, we have investigated the role of endogenous PACAP during cerebellar development by comparing the morphology of normal and PACAP-deficient mouse cerebellum, and the response of cerebellar granule cells from normal and PACAP-deficient mice subjected to neurotoxic insult in culture. There was no difference in cerebellar volume or granule cell number, in 11-day-old wild type versus PACAP-deficient mice. Cultured cerebellar neurons from PACAP-deficient and wild type mice also showed no apparent differences in survival and differentiation either under depolarizing conditions, or non-depolarizing conditions in the presence or absence of either dibutyryl cAMP or 100 nM PACAP. However, cultured cerebellar neurons from PACAP-deficient mice were significantly more sensitive than wild type neurons to ethanol- or hydrogen peroxide-induced toxicity. Differential ethanol toxicity was reversed by addition of 100 nM exogenous PACAP, suggesting that endogenous PACAP has neuroprotective activity in the context of cellular insult or stress. The neuroprotective action of PACAP was mimicked by dibutryl cAMP, indicating that it occurred via activation of adenylate cyclase. These results indicate that PACAP might act to protect the brain from paraphysiological insult, including exposure to toxins or hypoxia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.peptides.2005.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.peptides.2005.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Frontiers Media SA Savage, Daniel; Rosenberg, Martina; Coquet, Laurent; Porch, Morgan; Allen, Nyika; Roux, Christian; Aligny, Caroline; Jouenne, Thierry; Gonzalez, Bruno;Jegou et al. (2012) have reported prenatal alcohol exposure (PAE)-induced reductions of angiogenesis-related proteins in mouse placenta. These effects were associated with striking alterations in microvascular development in neonatal cerebral cortex. Here, we employed a rat model of moderate PAE to search for additional proteins whose placental and fetal cortical expression is altered by PAE, along with a subsequent examination of fetal cerebral cortical alterations associated with altered protein expression. Long-Evans rat dams voluntarily consumed either a 0 or 5% ethanol solution 4 h each day throughout gestation. Daily ethanol consumption, which resulted in a mean peak maternal serum ethanol concentration of 60.8 mg/dL, did not affect maternal weight gain, litter size, or placental or fetal body weight. On gestational day 20, rat placental: fetal units were removed by Caesarian section. Placental protein expression, analyzed by 2D-PAGE - tandem mass spectroscopy, identified a total of 1,117 protein spots, 20 of which were significantly altered by PAE. To date, 14 of these PAE-altered proteins have been identified. Western blotting confirmed the alterations of two of these placental proteins, namely, annexin-A4 (ANX-A4) and cerebral cavernous malformation protein 3 (CCM-3). Specifically, PAE elevated ANX-A4 and decreased CCM-3 in placenta. Subsequently, these two proteins were measured in fetal cerebral cortex, along with radiohistochemical studies of VEGF binding and histofluorescence studies of microvascular density in fetal cerebral cortex. PAE elevated ANX-A4 and decreased CCM-3 in fetal cerebral cortex, in a pattern similar to the alterations observed in placenta. Further, both VEGF receptor binding and microvascular density and orientation, measures that are sensitive to reduced CCM-3 expression in developing brain, were significantly reduced in the ventricular zone of fetal cerebral cortex. These results suggest that the expression angiogenesis-related proteins in placenta might serve as a biomarker of ethanol-induced alterations in microvascular development in fetal brain.
Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2020Full-Text: https://hal.science/hal-03053776Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2020.00519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2020Full-Text: https://hal.science/hal-03053776Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2020.00519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Wiley Lefebvre, Thomas; Gonzalez, Bruno J; Vaudry, David; Desrues, Laurence; Falluel-Morel, Antony; Aubert, Nicolas; Fournier, Alain; Tonon, Marie-Christine; Vaudry, Hubert; Castel, Hélène;pmid: 19493160
AbstractTransient exposure to ethanol (EtOH) results in a massive neurodegeneration in the developing brain leading to behavioral and cognitive deficits observed in fetal alcohol syndrome. There is now compelling evidence that K+ channels play an important role in the control of programmed cell death. The aim of the present work was to investigate the involvement of K+ channels in the EtOH‐induced cerebellar granule cell death and/or survival. At low and high concentrations, EtOH evoked membrane depolarization and hyperpolarization, respectively. Bath perfusion of EtOH (10 mM) depressed the IA (transient K+ current) potassium current whereas EtOH (400 mM) provoked a marked potentiation of the specific IK (delayed rectifier K+ current) current. Pipette dialysis with GTPγS or GDPβS did not modify the effects of EtOH (400 mM) on both membrane potential and IK current. In contrast, the reversible depolarization and slowly recovering inhibition of IA induced by EtOH (10 mM) became irreversible in the presence of GTPγS. EtOH (400 mM) induced prodeath responses whereas EtOH (10 mM) and K+ channel blockers promoted cell survival. Altogether, these results indicate that in cerebellar granule cells, EtOH mediates a dual effect on K+ currents partly involved in the control of granule cell death.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverJournal of NeurochemistryArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.2009.06197.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverJournal of NeurochemistryArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.2009.06197.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Carol Hamelink; David Vaudry; Robert L. Eskay; Bruno J. Gonzalez; Lee E. Eiden; Ruslan Damadzic;The rodent cerebellum is richly supplied with PACAPergic innervation. Exogenous pituitary adenylate cyclase-activating polypeptide (PACAP) increases cerebellar granule cell survival and differentiation in culture, and enhances the number of neuroblasts in the molecular and internal granule cell layers (IGL) when injected postnatally into the cerebellum in vivo. Here, we have investigated the role of endogenous PACAP during cerebellar development by comparing the morphology of normal and PACAP-deficient mouse cerebellum, and the response of cerebellar granule cells from normal and PACAP-deficient mice subjected to neurotoxic insult in culture. There was no difference in cerebellar volume or granule cell number, in 11-day-old wild type versus PACAP-deficient mice. Cultured cerebellar neurons from PACAP-deficient and wild type mice also showed no apparent differences in survival and differentiation either under depolarizing conditions, or non-depolarizing conditions in the presence or absence of either dibutyryl cAMP or 100 nM PACAP. However, cultured cerebellar neurons from PACAP-deficient mice were significantly more sensitive than wild type neurons to ethanol- or hydrogen peroxide-induced toxicity. Differential ethanol toxicity was reversed by addition of 100 nM exogenous PACAP, suggesting that endogenous PACAP has neuroprotective activity in the context of cellular insult or stress. The neuroprotective action of PACAP was mimicked by dibutryl cAMP, indicating that it occurred via activation of adenylate cyclase. These results indicate that PACAP might act to protect the brain from paraphysiological insult, including exposure to toxins or hypoxia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.peptides.2005.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.peptides.2005.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Frontiers Media SA Savage, Daniel; Rosenberg, Martina; Coquet, Laurent; Porch, Morgan; Allen, Nyika; Roux, Christian; Aligny, Caroline; Jouenne, Thierry; Gonzalez, Bruno;Jegou et al. (2012) have reported prenatal alcohol exposure (PAE)-induced reductions of angiogenesis-related proteins in mouse placenta. These effects were associated with striking alterations in microvascular development in neonatal cerebral cortex. Here, we employed a rat model of moderate PAE to search for additional proteins whose placental and fetal cortical expression is altered by PAE, along with a subsequent examination of fetal cerebral cortical alterations associated with altered protein expression. Long-Evans rat dams voluntarily consumed either a 0 or 5% ethanol solution 4 h each day throughout gestation. Daily ethanol consumption, which resulted in a mean peak maternal serum ethanol concentration of 60.8 mg/dL, did not affect maternal weight gain, litter size, or placental or fetal body weight. On gestational day 20, rat placental: fetal units were removed by Caesarian section. Placental protein expression, analyzed by 2D-PAGE - tandem mass spectroscopy, identified a total of 1,117 protein spots, 20 of which were significantly altered by PAE. To date, 14 of these PAE-altered proteins have been identified. Western blotting confirmed the alterations of two of these placental proteins, namely, annexin-A4 (ANX-A4) and cerebral cavernous malformation protein 3 (CCM-3). Specifically, PAE elevated ANX-A4 and decreased CCM-3 in placenta. Subsequently, these two proteins were measured in fetal cerebral cortex, along with radiohistochemical studies of VEGF binding and histofluorescence studies of microvascular density in fetal cerebral cortex. PAE elevated ANX-A4 and decreased CCM-3 in fetal cerebral cortex, in a pattern similar to the alterations observed in placenta. Further, both VEGF receptor binding and microvascular density and orientation, measures that are sensitive to reduced CCM-3 expression in developing brain, were significantly reduced in the ventricular zone of fetal cerebral cortex. These results suggest that the expression angiogenesis-related proteins in placenta might serve as a biomarker of ethanol-induced alterations in microvascular development in fetal brain.
Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2020Full-Text: https://hal.science/hal-03053776Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2020.00519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2020Full-Text: https://hal.science/hal-03053776Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2020.00519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Wiley Lefebvre, Thomas; Gonzalez, Bruno J; Vaudry, David; Desrues, Laurence; Falluel-Morel, Antony; Aubert, Nicolas; Fournier, Alain; Tonon, Marie-Christine; Vaudry, Hubert; Castel, Hélène;pmid: 19493160
AbstractTransient exposure to ethanol (EtOH) results in a massive neurodegeneration in the developing brain leading to behavioral and cognitive deficits observed in fetal alcohol syndrome. There is now compelling evidence that K+ channels play an important role in the control of programmed cell death. The aim of the present work was to investigate the involvement of K+ channels in the EtOH‐induced cerebellar granule cell death and/or survival. At low and high concentrations, EtOH evoked membrane depolarization and hyperpolarization, respectively. Bath perfusion of EtOH (10 mM) depressed the IA (transient K+ current) potassium current whereas EtOH (400 mM) provoked a marked potentiation of the specific IK (delayed rectifier K+ current) current. Pipette dialysis with GTPγS or GDPβS did not modify the effects of EtOH (400 mM) on both membrane potential and IK current. In contrast, the reversible depolarization and slowly recovering inhibition of IA induced by EtOH (10 mM) became irreversible in the presence of GTPγS. EtOH (400 mM) induced prodeath responses whereas EtOH (10 mM) and K+ channel blockers promoted cell survival. Altogether, these results indicate that in cerebellar granule cells, EtOH mediates a dual effect on K+ currents partly involved in the control of granule cell death.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverJournal of NeurochemistryArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.2009.06197.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverJournal of NeurochemistryArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.2009.06197.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu