- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- US
- Remote Sensing
- Energy Research
- Open Access
- Open Source
- US
- Remote Sensing
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Liming He; Rong Wang; Georgy Mostovoy; Jane Liu; Jing M. Chen; Jiali Shang; Jiangui Liu; Heather McNairn; Jarrett Powers;doi: 10.3390/rs13040806
We evaluate the potential of using a process-based ecosystem model (BEPS) for crop biomass mapping at 20 m resolution over the research site in Manitoba, western Canada driven by spatially explicit leaf area index (LAI) retrieved from Sentinel-2 spectral reflectance throughout the entire growing season. We find that overall, the BEPS-simulated crop gross primary production (GPP), net primary production (NPP), and LAI time-series can explain 82%, 83%, and 85%, respectively, of the variation in the above-ground biomass (AGB) for six selected annual crops, while an application of individual crop LAI explains only 50% of the variation in AGB. The linear relationships between the AGB and these three indicators (GPP, NPP and LAI time-series) are rather high for the six crops, while the slopes of the regression models vary for individual crop type, indicating the need for calibration of key photosynthetic parameters and carbon allocation coefficients. This study demonstrates that accumulated GPP and NPP derived from an ecosystem model, driven by Sentinel-2 LAI data and abiotic data, can be effectively used for crop AGB mapping; the temporal information from LAI is also effective in AGB mapping for some crop types.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:MDPI AG Funded by:NSF | IGERT Program in Adaptive...NSF| IGERT Program in Adaptive ManagementAuthors: Miguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; +3 AuthorsMiguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; Erin Bunting; Jane Southworth; Likai Zhu;doi: 10.3390/rs5126513
Deconstructing the drivers of large-scale vegetation change is critical to predicting and managing projected climate and land use changes that will affect regional vegetation cover in degraded or threated ecosystems. We investigate the shared dynamics of spatially variable vegetation across three large watersheds in the southern Africa savanna. Dynamic Factor Analysis (DFA), a multivariate time-series dimension reduction technique, was used to identify the most important physical drivers of regional vegetation change. We first evaluated the Advanced Very High Resolution Radiometer (AVHRR)- vs. the Moderate Resolution Imaging Spectroradiometer (MODIS)-based Normalized Difference Vegetation Index (NDVI) datasets across their overlapping period (2001–2010). NDVI follows a general pattern of cyclic seasonal variation, with distinct spatio-temporal patterns across physio-geographic regions. Both NDVI products produced similar DFA models, although MODIS was simulated better. Soil moisture and precipitation controlled NDVI for mean annual precipitation (MAP) < 750 mm, and above this, evaporation and mean temperature dominated. A second DFA with the full AVHRR (1982–2010) data found that for MAP < 750 mm, soil moisture and actual evapotranspiration control NDVI dynamics, followed by mean and maximum temperatures. Above 950 mm, actual evapotranspiration and precipitation dominate. The quantification of the combined spatio-temporal environmental drivers of NDVI expands our ability to understand landscape level changes in vegetation evaluated through remote sensing and improves the basis for the management of vulnerable regions, like the southern Africa savannas.
Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 70 Powered bymore_vert Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 United StatesPublisher:MDPI AG Authors: Zeyad Awwad; Abdulaziz Alharbi; Abdulelah H. Habib; Olivier L. de Weck;With the growth of residential rooftop PV adoption in recent decades, the problem of effective layout design has become increasingly important in recent years. Although a number of automated methods have been introduced, these tend to rely on simplifying assumptions and heuristics to improve computational tractability. We demonstrate a fully automated layout design pipeline that attempts to solve a more general formulation with greater geometric flexibility that accounts for shading losses. Our approach generates rooftop areas from satellite imagery and uses MINLP optimization to select panel positions, azimuth angles and tilt angles on an individual basis rather than imposing any predefined layouts. Our results demonstrate that shading plays a critical role in automated rooftop PV optimization and significantly changes the resulting layouts. Additionally, they suggest that, although several common heuristics are often effective, they may not be universally suitable due to complications resulting from geometric restrictions and shading losses. Finally, we evaluate a few specific heuristics from the literature and propose a potential new rule of thumb that may help improve rooftop solar energy potential when shading effects are considered.
DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2023License: CC BYFull-Text: http://dx.doi.org/10.3390/rs15051356Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15051356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2023License: CC BYFull-Text: http://dx.doi.org/10.3390/rs15051356Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15051356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: Wenjuan Shen; Mingshi Li; Chengquan Huang; Anshi Wei;doi: 10.3390/rs8070595
Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting and quantifying the effect of forest disturbance on the terrestrial carbon cycle. We estimated AGB from 1990 to 2011 in northern Guangdong, China, based on a spatially explicit dataset derived from six years of national forest inventory (NFI) plots, Landsat time series imagery (1986–2011) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radars (PALSAR) 25 m mosaic data (2007–2010). Four types of variables were derived for modeling and assessment. The random forest approach was used to seek the optimal variables for mapping and validation. The root mean square error (RMSE) of plot-level validation was between 6.44 and 39.49 (t/ha), the normalized root-mean-square error (NRMSE) was between 7.49% and 19.01% and mean absolute error (MAE) was between 5.06 and 23.84 t/ha. The highest coefficient of determination R2 of 0.8 and the lowest NRMSE of 7.49% were reported in 2006. A clear increasing trend of mean AGB from the lowest value of 13.58 t/ha to the highest value of 66.25 t/ha was witnessed between 1988 and 2000, while after 2000 there was a fluctuating ascending change, with a peak mean AGB of 67.13 t/ha in 2004. By integrating AGB change with forest disturbance, the trend in disturbance area closely corresponded with the trend in AGB decrease. To determine the driving forces of these changes, the correlation analysis was adopted and exploratory factor analysis (EFA) method was used to find a factor rotation that maximizes this variance and represents the dominant factors of nine climate elements and nine human activities elements affecting the AGB dynamics. Overall, human activities contributed more to short-term AGB dynamics than climate data. Harvesting and human-induced fire in combination with rock desertification and global warming made a strong contribution to AGB changes. This study provides valuable information for the relationships between forest AGB and climate as well as forest disturbance in subtropical zones.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Husam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; +2 AuthorsHusam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; M. Santosh; Abdullah Alamri;Landslide susceptibility modeling, an essential approach to mitigate natural disasters, has witnessed considerable improvement following advances in machine learning (ML) techniques. However, in most of the previous studies, the distribution of input data was assumed as being, and treated, as normal or Gaussian; this assumption is not always valid as ML is heavily dependent on the quality of the input data. Therefore, we examine the effectiveness of six feature transformations (minimax normalization (Std-X), logarithmic functions (Log-X), reciprocal function (Rec-X), power functions (Power-X), optimal features (Opt-X), and one-hot encoding (Ohe-X) over the 11conditioning factors (i.e., altitude, slope, aspect, curvature, distance to road, distance to lineament, distance to stream, terrain roughness index (TRI), normalized difference vegetation index (NDVI), land use, and vegetation density). We selected the frequent landslide-prone area in the Cameron Highlands in Malaysia as a case study to test this novel approach. These transformations were then assessed by three benchmark ML methods, namely extreme gradient boosting (XGB), logistic regression (LR), and artificial neural networks (ANN). The 10-fold cross-validation method was used for model evaluations. Our results suggest that using Ohe-X transformation over the ANN model considerably improved performance from 52.244 to 89.398 (37.154% improvement).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Jie Pei; Li Wang; Xiaoyue Wang; Zheng Niu; Maggi Kelly; Xiao-Peng Song; Ni Huang; Jing Geng; Haifeng Tian; Yang Yu; Shiguang Xu; Lei Wang; Qing Ying; Jianhua Cao;doi: 10.3390/rs11172044
Since the implementation of China’s afforestation and conservation projects during recent decades, an increasing number of studies have reported greening trends in the karst regions of southwest China using coarse-resolution satellite imagery, but small-scale changes in the heterogenous landscapes remain largely unknown. Focusing on two typical karst regions in the Nandong and Xiaojiang watersheds in Yunnan province, we processed 2,497 Landsat scenes from 1988 to 2016 using the Google Earth Engine cloud platform and analyzed vegetation trends and associated drivers. We found that both watersheds experienced significant increasing trends in annual fractional vegetation cover, at a rate of 0.0027 year−1 and 0.0020 year−1, respectively. Notably, the greening trends have been intensifying during the conservation period (2001–2016) even under unfavorable climate conditions. Human-induced ecological engineering was the primary factor for the increased greenness. Moreover, vegetation change responded differently to variations in topographic gradients and lithological types. Relatively more vegetation recovery was found in regions with moderate slopes and elevation, and pure limestone, limestone and dolomite interbedded layer as well as impure carbonate rocks than non-karst rocks. Partial correlation analysis of vegetation trends and temperature and precipitation trends suggested that climate change played a minor role in vegetation recovery. Our findings contribute to an improved understanding of the mechanisms behind vegetation changes in karst areas and may provide scientific supports for local afforestation and conservation policies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Alicia Amerson; Ilan Gonzalez-Hirshfeld; Darielle Dexheimer;doi: 10.3390/rs15194709
The interactions between marine wildlife and marine energy devices are not well understood, leading to regulatory delays for device deployments and testing. Technologies that enable marine wildlife observations can help to fill data gaps and reduce uncertainties about animal–device interactions. A validation test conducted in Galveston Bay near La Porte, Texas, in December 2022 used a technology package consisting of a tethered balloon system and three independent sensor systems, including three-band visible, eight-band multispectral, and single-band thermal to detect three marine-mammal-shaped surrogates. The field campaign aimed to provide an initial step to evaluating the use of the TBS and the effectiveness of the sensor suite for marine wildlife observations and detection. From 2 December to 7 December 2022, 6 flights were conducted under varying altitudes and environmental conditions resulting in the collection of 5454 images. A subset of the images was classified and analyzed with two collection criteria including Beaufort wind force scale and TBS altitude to assess a range of observations of a surrogate from near-shore to offshore based on pixel count. The results of this validation test demonstrate the potential for using TBSs and imaging sensors for marine wildlife observations and offer valuable information for further development and application of this technology for marine energy and other blue economy sectors.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15194709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15194709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Funded by:NSF | Arctic Observing Networks..., NSF | Collaborative Research: S...NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observationsJeremy May; Nathan Healey; Hella Ahrends; Robert Hollister; Craig Tweedie; Jeffrey Welker; William Gould; Steven Oberbauer;doi: 10.3390/rs9121338
Climate change is warming the temperatures and lengthening the Arctic growing season with potentially important effects on plant phenology. The ability of plant species to acclimate to changing climatic conditions will dictate the level to which their spatial coverage and habitat-type dominance is different in the future. While the effect of changes in temperature on phenology and species composition have been observed at the plot and at the regional scale, a systematic assessment at medium spatial scales using new noninvasive sensor techniques has not been performed yet. At four sites across the North Slope of Alaska, changes in the Normalized Difference Vegetation Index (NDVI) signal were observed by Mobile Instrumented Sensor Platforms (MISP) that are suspended over 50 m transects spanning local moisture gradients. The rates of greening (measured in June) and senescence (measured in August) in response to the air temperature was estimated by changes in NDVI measured as the difference between the NDVI on a specific date and three days later. In June, graminoid- and shrub-dominated habitats showed the greatest rates of NDVI increase in response to the high air temperatures, while forb- and lichen-dominated habitats were less responsive. In August, the NDVI was more responsive to variations in the daily average temperature than spring greening at all sites. For graminoid- and shrub-dominated habitats, we observed a delayed decrease of the NDVI, reflecting a prolonged growing season, in response to high August temperatures. Consequently, the annual C assimilation capacity of these habitats is increased, which in turn may be partially responsible for shrub expansion and further increases in net summer CO2 fixation. Strong interannual differences highlight that long-term and noninvasive measurements of such complex feedback mechanisms in arctic ecosystems are critical to fully articulate the net effects of climate variability and climate change on plant community and ecosystem processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9121338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9121338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Yaa Acquaah; Gregory H. Monty; Balakrishna Gokaraju; Raymond Tesiero;doi: 10.3390/rs13193847
The control of thermostats of a heating, ventilation, and air-conditioning (HVAC) system installed in commercial and residential buildings remains a pertinent problem in building energy efficiency and thermal comfort research. The ability to determine the number of people at a particular time in an area is imperative for energy efficiency in order to condition only occupied regions and thermally deficient regions. In this study of the best features comparison for detecting the number of people in an area, feature extraction techniques including wavelet scattering, wavelet decomposition, grey-level co-occurrence matrix (GLCM) and feature maps convolution neural network (CNN) layers were explored using thermal camera imagery. Specifically, the pretrained CNN networks explored are the deep residual (Resnet-50) and visual geometry group (VGG-16) networks. The discriminating potential of Haar, Daubechies and Symlets wavelet statistics on different distributions of data were investigated. The performance of VGG-16 and ResNet-50 in an end-to-end manner utilizing transfer learning approach was investigated. Experimental results showed the classification and regression trees (CART) model trained on only GLCM and Haar wavelet statistic features, individually achieved accuracies of approximately 80% and 84%, respectively, in the detection problem. Moreover, k-nearest neighbors (KNN) trained on the combined features of GLCM and Haar wavelet statistics achieved an accuracy of approximately 86%. In addition, the performance accuracy of the multi classification support vector machine (SVM) trained on deep features obtained from layers of pretrained ResNet-50 and VGG-16 was between 96% and 97%. Furthermore, ResNet-50 transfer learning outperformed the VGG-16 transfer learning model for occupancy detection using thermal imagery. Overall, the SVM model trained on features extracted from wavelet scattering emerged as the best performing classifier with an accuracy of 100%. A principal component analysis (PCA) on the wavelet scattering features proved that the first twenty (20) principal components achieved a similar accuracy level instead of training on the whole feature set to reduce the execution time. The occupancy detection models can be integrated into HVAC control systems for energy efficiency and security systems, and aid in the distribution of resources to people in an area.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13193847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13193847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Matthew Ware; Simona Ceriani; Joseph Long; Mariana Fuentes;doi: 10.3390/rs13142654
Wave wash-over poses a significant threat to sea turtle nests, with sustained exposure to waves potentially resulting in embryonic mortality and altered hatchling locomotor function, size, and sex ratios. Identifying where and under what conditions wave exposure becomes a problem, and deciding what action(s) to take (if any), is a common issue for sea turtle managers. To determine the exposure of sea turtle nests to waves and identify potential impacts to hatchling productivity, we integrated a geographic information system with remote sensing and wave runup modeling across 40 nesting beaches used by the Northern Gulf of Mexico Loggerhead Recovery Unit. Our models indicate that, on average, approximately 50% of the available beach area and 34% of nesting locations per nesting beach face a significant risk of wave exposure, particularly during tropical storms. Field data from beaches in the Florida Panhandle show that 42.3% of all nest locations reported wave exposure, which resulted in a 45% and 46% decline in hatching and emergence success, respectively, relative to their undisturbed counterparts. Historical nesting frequency at each beach and modeled exposure to waves were considered to identify priority locations with high nesting density which either experience low risk of wave exposure, as these are good candidates for protection as refugia for sustained hatchling production, or which have high wave exposure where efforts to reduce impacts are most warranted. Nine beaches in the eastern Florida Panhandle were identified as priority sites for future efforts such as habitat protection or research and development of management strategies. This modeling exercise offers a flexible approach for a threat assessment integration into research and management questions relevant to sea turtle conservation, as well as for other beach species and human uses of the coastal environment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Liming He; Rong Wang; Georgy Mostovoy; Jane Liu; Jing M. Chen; Jiali Shang; Jiangui Liu; Heather McNairn; Jarrett Powers;doi: 10.3390/rs13040806
We evaluate the potential of using a process-based ecosystem model (BEPS) for crop biomass mapping at 20 m resolution over the research site in Manitoba, western Canada driven by spatially explicit leaf area index (LAI) retrieved from Sentinel-2 spectral reflectance throughout the entire growing season. We find that overall, the BEPS-simulated crop gross primary production (GPP), net primary production (NPP), and LAI time-series can explain 82%, 83%, and 85%, respectively, of the variation in the above-ground biomass (AGB) for six selected annual crops, while an application of individual crop LAI explains only 50% of the variation in AGB. The linear relationships between the AGB and these three indicators (GPP, NPP and LAI time-series) are rather high for the six crops, while the slopes of the regression models vary for individual crop type, indicating the need for calibration of key photosynthetic parameters and carbon allocation coefficients. This study demonstrates that accumulated GPP and NPP derived from an ecosystem model, driven by Sentinel-2 LAI data and abiotic data, can be effectively used for crop AGB mapping; the temporal information from LAI is also effective in AGB mapping for some crop types.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:MDPI AG Funded by:NSF | IGERT Program in Adaptive...NSF| IGERT Program in Adaptive ManagementAuthors: Miguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; +3 AuthorsMiguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; Erin Bunting; Jane Southworth; Likai Zhu;doi: 10.3390/rs5126513
Deconstructing the drivers of large-scale vegetation change is critical to predicting and managing projected climate and land use changes that will affect regional vegetation cover in degraded or threated ecosystems. We investigate the shared dynamics of spatially variable vegetation across three large watersheds in the southern Africa savanna. Dynamic Factor Analysis (DFA), a multivariate time-series dimension reduction technique, was used to identify the most important physical drivers of regional vegetation change. We first evaluated the Advanced Very High Resolution Radiometer (AVHRR)- vs. the Moderate Resolution Imaging Spectroradiometer (MODIS)-based Normalized Difference Vegetation Index (NDVI) datasets across their overlapping period (2001–2010). NDVI follows a general pattern of cyclic seasonal variation, with distinct spatio-temporal patterns across physio-geographic regions. Both NDVI products produced similar DFA models, although MODIS was simulated better. Soil moisture and precipitation controlled NDVI for mean annual precipitation (MAP) < 750 mm, and above this, evaporation and mean temperature dominated. A second DFA with the full AVHRR (1982–2010) data found that for MAP < 750 mm, soil moisture and actual evapotranspiration control NDVI dynamics, followed by mean and maximum temperatures. Above 950 mm, actual evapotranspiration and precipitation dominate. The quantification of the combined spatio-temporal environmental drivers of NDVI expands our ability to understand landscape level changes in vegetation evaluated through remote sensing and improves the basis for the management of vulnerable regions, like the southern Africa savannas.
Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 70 Powered bymore_vert Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 United StatesPublisher:MDPI AG Authors: Zeyad Awwad; Abdulaziz Alharbi; Abdulelah H. Habib; Olivier L. de Weck;With the growth of residential rooftop PV adoption in recent decades, the problem of effective layout design has become increasingly important in recent years. Although a number of automated methods have been introduced, these tend to rely on simplifying assumptions and heuristics to improve computational tractability. We demonstrate a fully automated layout design pipeline that attempts to solve a more general formulation with greater geometric flexibility that accounts for shading losses. Our approach generates rooftop areas from satellite imagery and uses MINLP optimization to select panel positions, azimuth angles and tilt angles on an individual basis rather than imposing any predefined layouts. Our results demonstrate that shading plays a critical role in automated rooftop PV optimization and significantly changes the resulting layouts. Additionally, they suggest that, although several common heuristics are often effective, they may not be universally suitable due to complications resulting from geometric restrictions and shading losses. Finally, we evaluate a few specific heuristics from the literature and propose a potential new rule of thumb that may help improve rooftop solar energy potential when shading effects are considered.
DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2023License: CC BYFull-Text: http://dx.doi.org/10.3390/rs15051356Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15051356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2023License: CC BYFull-Text: http://dx.doi.org/10.3390/rs15051356Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15051356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: Wenjuan Shen; Mingshi Li; Chengquan Huang; Anshi Wei;doi: 10.3390/rs8070595
Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting and quantifying the effect of forest disturbance on the terrestrial carbon cycle. We estimated AGB from 1990 to 2011 in northern Guangdong, China, based on a spatially explicit dataset derived from six years of national forest inventory (NFI) plots, Landsat time series imagery (1986–2011) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radars (PALSAR) 25 m mosaic data (2007–2010). Four types of variables were derived for modeling and assessment. The random forest approach was used to seek the optimal variables for mapping and validation. The root mean square error (RMSE) of plot-level validation was between 6.44 and 39.49 (t/ha), the normalized root-mean-square error (NRMSE) was between 7.49% and 19.01% and mean absolute error (MAE) was between 5.06 and 23.84 t/ha. The highest coefficient of determination R2 of 0.8 and the lowest NRMSE of 7.49% were reported in 2006. A clear increasing trend of mean AGB from the lowest value of 13.58 t/ha to the highest value of 66.25 t/ha was witnessed between 1988 and 2000, while after 2000 there was a fluctuating ascending change, with a peak mean AGB of 67.13 t/ha in 2004. By integrating AGB change with forest disturbance, the trend in disturbance area closely corresponded with the trend in AGB decrease. To determine the driving forces of these changes, the correlation analysis was adopted and exploratory factor analysis (EFA) method was used to find a factor rotation that maximizes this variance and represents the dominant factors of nine climate elements and nine human activities elements affecting the AGB dynamics. Overall, human activities contributed more to short-term AGB dynamics than climate data. Harvesting and human-induced fire in combination with rock desertification and global warming made a strong contribution to AGB changes. This study provides valuable information for the relationships between forest AGB and climate as well as forest disturbance in subtropical zones.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Husam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; +2 AuthorsHusam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; M. Santosh; Abdullah Alamri;Landslide susceptibility modeling, an essential approach to mitigate natural disasters, has witnessed considerable improvement following advances in machine learning (ML) techniques. However, in most of the previous studies, the distribution of input data was assumed as being, and treated, as normal or Gaussian; this assumption is not always valid as ML is heavily dependent on the quality of the input data. Therefore, we examine the effectiveness of six feature transformations (minimax normalization (Std-X), logarithmic functions (Log-X), reciprocal function (Rec-X), power functions (Power-X), optimal features (Opt-X), and one-hot encoding (Ohe-X) over the 11conditioning factors (i.e., altitude, slope, aspect, curvature, distance to road, distance to lineament, distance to stream, terrain roughness index (TRI), normalized difference vegetation index (NDVI), land use, and vegetation density). We selected the frequent landslide-prone area in the Cameron Highlands in Malaysia as a case study to test this novel approach. These transformations were then assessed by three benchmark ML methods, namely extreme gradient boosting (XGB), logistic regression (LR), and artificial neural networks (ANN). The 10-fold cross-validation method was used for model evaluations. Our results suggest that using Ohe-X transformation over the ANN model considerably improved performance from 52.244 to 89.398 (37.154% improvement).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Jie Pei; Li Wang; Xiaoyue Wang; Zheng Niu; Maggi Kelly; Xiao-Peng Song; Ni Huang; Jing Geng; Haifeng Tian; Yang Yu; Shiguang Xu; Lei Wang; Qing Ying; Jianhua Cao;doi: 10.3390/rs11172044
Since the implementation of China’s afforestation and conservation projects during recent decades, an increasing number of studies have reported greening trends in the karst regions of southwest China using coarse-resolution satellite imagery, but small-scale changes in the heterogenous landscapes remain largely unknown. Focusing on two typical karst regions in the Nandong and Xiaojiang watersheds in Yunnan province, we processed 2,497 Landsat scenes from 1988 to 2016 using the Google Earth Engine cloud platform and analyzed vegetation trends and associated drivers. We found that both watersheds experienced significant increasing trends in annual fractional vegetation cover, at a rate of 0.0027 year−1 and 0.0020 year−1, respectively. Notably, the greening trends have been intensifying during the conservation period (2001–2016) even under unfavorable climate conditions. Human-induced ecological engineering was the primary factor for the increased greenness. Moreover, vegetation change responded differently to variations in topographic gradients and lithological types. Relatively more vegetation recovery was found in regions with moderate slopes and elevation, and pure limestone, limestone and dolomite interbedded layer as well as impure carbonate rocks than non-karst rocks. Partial correlation analysis of vegetation trends and temperature and precipitation trends suggested that climate change played a minor role in vegetation recovery. Our findings contribute to an improved understanding of the mechanisms behind vegetation changes in karst areas and may provide scientific supports for local afforestation and conservation policies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Alicia Amerson; Ilan Gonzalez-Hirshfeld; Darielle Dexheimer;doi: 10.3390/rs15194709
The interactions between marine wildlife and marine energy devices are not well understood, leading to regulatory delays for device deployments and testing. Technologies that enable marine wildlife observations can help to fill data gaps and reduce uncertainties about animal–device interactions. A validation test conducted in Galveston Bay near La Porte, Texas, in December 2022 used a technology package consisting of a tethered balloon system and three independent sensor systems, including three-band visible, eight-band multispectral, and single-band thermal to detect three marine-mammal-shaped surrogates. The field campaign aimed to provide an initial step to evaluating the use of the TBS and the effectiveness of the sensor suite for marine wildlife observations and detection. From 2 December to 7 December 2022, 6 flights were conducted under varying altitudes and environmental conditions resulting in the collection of 5454 images. A subset of the images was classified and analyzed with two collection criteria including Beaufort wind force scale and TBS altitude to assess a range of observations of a surrogate from near-shore to offshore based on pixel count. The results of this validation test demonstrate the potential for using TBSs and imaging sensors for marine wildlife observations and offer valuable information for further development and application of this technology for marine energy and other blue economy sectors.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15194709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15194709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Funded by:NSF | Arctic Observing Networks..., NSF | Collaborative Research: S...NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observationsJeremy May; Nathan Healey; Hella Ahrends; Robert Hollister; Craig Tweedie; Jeffrey Welker; William Gould; Steven Oberbauer;doi: 10.3390/rs9121338
Climate change is warming the temperatures and lengthening the Arctic growing season with potentially important effects on plant phenology. The ability of plant species to acclimate to changing climatic conditions will dictate the level to which their spatial coverage and habitat-type dominance is different in the future. While the effect of changes in temperature on phenology and species composition have been observed at the plot and at the regional scale, a systematic assessment at medium spatial scales using new noninvasive sensor techniques has not been performed yet. At four sites across the North Slope of Alaska, changes in the Normalized Difference Vegetation Index (NDVI) signal were observed by Mobile Instrumented Sensor Platforms (MISP) that are suspended over 50 m transects spanning local moisture gradients. The rates of greening (measured in June) and senescence (measured in August) in response to the air temperature was estimated by changes in NDVI measured as the difference between the NDVI on a specific date and three days later. In June, graminoid- and shrub-dominated habitats showed the greatest rates of NDVI increase in response to the high air temperatures, while forb- and lichen-dominated habitats were less responsive. In August, the NDVI was more responsive to variations in the daily average temperature than spring greening at all sites. For graminoid- and shrub-dominated habitats, we observed a delayed decrease of the NDVI, reflecting a prolonged growing season, in response to high August temperatures. Consequently, the annual C assimilation capacity of these habitats is increased, which in turn may be partially responsible for shrub expansion and further increases in net summer CO2 fixation. Strong interannual differences highlight that long-term and noninvasive measurements of such complex feedback mechanisms in arctic ecosystems are critical to fully articulate the net effects of climate variability and climate change on plant community and ecosystem processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9121338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9121338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Yaa Acquaah; Gregory H. Monty; Balakrishna Gokaraju; Raymond Tesiero;doi: 10.3390/rs13193847
The control of thermostats of a heating, ventilation, and air-conditioning (HVAC) system installed in commercial and residential buildings remains a pertinent problem in building energy efficiency and thermal comfort research. The ability to determine the number of people at a particular time in an area is imperative for energy efficiency in order to condition only occupied regions and thermally deficient regions. In this study of the best features comparison for detecting the number of people in an area, feature extraction techniques including wavelet scattering, wavelet decomposition, grey-level co-occurrence matrix (GLCM) and feature maps convolution neural network (CNN) layers were explored using thermal camera imagery. Specifically, the pretrained CNN networks explored are the deep residual (Resnet-50) and visual geometry group (VGG-16) networks. The discriminating potential of Haar, Daubechies and Symlets wavelet statistics on different distributions of data were investigated. The performance of VGG-16 and ResNet-50 in an end-to-end manner utilizing transfer learning approach was investigated. Experimental results showed the classification and regression trees (CART) model trained on only GLCM and Haar wavelet statistic features, individually achieved accuracies of approximately 80% and 84%, respectively, in the detection problem. Moreover, k-nearest neighbors (KNN) trained on the combined features of GLCM and Haar wavelet statistics achieved an accuracy of approximately 86%. In addition, the performance accuracy of the multi classification support vector machine (SVM) trained on deep features obtained from layers of pretrained ResNet-50 and VGG-16 was between 96% and 97%. Furthermore, ResNet-50 transfer learning outperformed the VGG-16 transfer learning model for occupancy detection using thermal imagery. Overall, the SVM model trained on features extracted from wavelet scattering emerged as the best performing classifier with an accuracy of 100%. A principal component analysis (PCA) on the wavelet scattering features proved that the first twenty (20) principal components achieved a similar accuracy level instead of training on the whole feature set to reduce the execution time. The occupancy detection models can be integrated into HVAC control systems for energy efficiency and security systems, and aid in the distribution of resources to people in an area.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13193847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13193847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Matthew Ware; Simona Ceriani; Joseph Long; Mariana Fuentes;doi: 10.3390/rs13142654
Wave wash-over poses a significant threat to sea turtle nests, with sustained exposure to waves potentially resulting in embryonic mortality and altered hatchling locomotor function, size, and sex ratios. Identifying where and under what conditions wave exposure becomes a problem, and deciding what action(s) to take (if any), is a common issue for sea turtle managers. To determine the exposure of sea turtle nests to waves and identify potential impacts to hatchling productivity, we integrated a geographic information system with remote sensing and wave runup modeling across 40 nesting beaches used by the Northern Gulf of Mexico Loggerhead Recovery Unit. Our models indicate that, on average, approximately 50% of the available beach area and 34% of nesting locations per nesting beach face a significant risk of wave exposure, particularly during tropical storms. Field data from beaches in the Florida Panhandle show that 42.3% of all nest locations reported wave exposure, which resulted in a 45% and 46% decline in hatching and emergence success, respectively, relative to their undisturbed counterparts. Historical nesting frequency at each beach and modeled exposure to waves were considered to identify priority locations with high nesting density which either experience low risk of wave exposure, as these are good candidates for protection as refugia for sustained hatchling production, or which have high wave exposure where efforts to reduce impacts are most warranted. Nine beaches in the eastern Florida Panhandle were identified as priority sites for future efforts such as habitat protection or research and development of management strategies. This modeling exercise offers a flexible approach for a threat assessment integration into research and management questions relevant to sea turtle conservation, as well as for other beach species and human uses of the coastal environment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu