- home
- Advanced Search
- Energy Research
- US
- Oceanography
- Energy Research
- US
- Oceanography
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:The Oceanography Society Funded by:NSF | Constraining the Past and..., NSF | Collaborative Research: G...NSF| Constraining the Past and Future Ocean Sink of Anthropogenic Carbon with Observations ,NSF| Collaborative Research: Global Ocean Repeat Hydrography, Carbon, and Tracer Measurements, 2015-2020John M. Lyman; Paul J. Durack; Timothy P. Boyer; Gregory C. Johnson; P. J. Gleckler; Sarah G. Purkey;The ocean is the primary heat sink of the global climate system. Since 1971, it has been responsible for storing more than 90% ofthe excess heat added to the Earth system by anthropogenic greenhouse-gas emissions. Adding this heat to the ocean contributes substantially to sea level rise and affects vital marine ecosystems. Considering the global ocean’s large role in ongoing climate variability and change, it is a good place to focus in order to understand what observed changes have occurred to date and, by using models, what future changes might arise under continued anthropogenic forcing of the climate system. While sparse measurement coverage leads to enhanced uncertainties with long-term historical estimates of change, modern measurements are beginning to provide the clearest picture yet of ongoing global ocean change. Observations show that the ocean is warming from the near-surface through to the abyss, a conclusion that is strengthened with each new analysis. In this assessment, we revisit observation- and model-based estimates of ocean warming from the industrial era to the present and show a consistent, full-depth pattern of change over the observed record that is likely to continue at an ever-increasing pace if effective actions to reduce greenhouse-gas emissions are not taken.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2018.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2018.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:The Oceanography Society Funded by:NSF | Collaborative Research: A..., NSF | Collaborative Research: G..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Analysis of Continental Shelf Ecosystems: Food Web Structure and Functional Relations ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC Regions ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC Regions ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets for US-GLOBEC RegionsRuzicka, James J.; Steele, John H.; Gaichas, Sarah K.; Ballerini, Tosca; Gifford, Dian J.; Brodeur, Richard D.; Hofmann, Eileen E.;handle: 1912/6589
End-to-end models were constructed to examine and compare the trophic structure and energy flow in coastal shelf ecosystems of four US Global Ocean Ecosystem Dynamics (GLOBEC) study regions: the Northern California Current, the Central Gulf of Alaska, Georges Bank, and the Southwestern Antarctic Peninsula. High-quality data collected on system components and processes over the life of the program were used as input to the models. Although the US GLOBEC program was species-centric, focused on the study of a selected set of target species of ecological or economic importance, we took a broader community-level approach to describe end-to-end energy flow, from nutrient input to fishery production. We built four end-to-end models that were structured similarly in terms of functional group composition and time scale. The models were used to identify the mid-trophic level groups that place the greatest demand on lower trophic level production while providing the greatest support to higher trophic level production. In general, euphausiids and planktivorous forage fishes were the critical energy-transfer nodes; however, some differences between ecosystems are apparent. For example, squid provide an important alternative energy pathway to forage fish, moderating the effects of changes to forage fish abundance in scenario analyses in the Central Gulf of Alaska. In the Northern California Current, large scyphozoan jellyfish are important consumers of plankton production, but can divert energy from the rest of the food web when abundant.
Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:The Oceanography Society Authors: Paul J. Durack;Alterations to the global water cycle are of concern as Earth’s climate changes. Although policymakers are mainly interested in changes to terrestrial rainfall—where, when, and how much it’s going to rain—the largest component of the global water cycle operates over the ocean where nearly all of Earth’s free water resides. Approximately 80% of Earth’s surface freshwater fluxes occur over the ocean; its surface salinity responds to changing evaporation and precipitation patterns by displaying salty or fresh anomalies. The salinity field integrates sporadic surface fluxes over time, and after accounting for ocean circulation and mixing, salinity changes resulting from long-term alterations to surface evaporation and precipitation are evident. Thus, ocean salinity measurements can provide insights into water-cycle operation and its long-term change. Although poor observational coverage and an incomplete view of the interaction of all water-cycle components limits our understanding, climate models are beginning to provide insights that are complementing observations. This new information suggests that the global water cycle is rapidly intensifying.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2015.03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 155 citations 155 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2015.03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:The Oceanography Society Eileen Hofmann; David Bushek; Susan Ford; Ximing Guo; Dale Haidvogel; Dennis Hedgecock; John Klinck; Coren Milbury; Diego Narvaez; Eric Powell; Yongping Wang; Zhiren Wang; John Wilkin; Liusuo Zhang;Delaware Bay oyster (Crassostrea virginica) populations are influenced by two lethal parasites that cause Dermo and MSX diseases. As part of the US National Science Foundation Ecology of Infectious Diseases initiative, a program developed for Delaware Bay focuses on understanding how oyster population genetics and population dynamics interact with the environment and these parasites to structure the host populations, and how these interactions might be modified by climate change. Laboratory and field studies undertaken during this program include identifying genes related to MSX and Dermo disease resistance, potential regions for refugia and the mechanisms that allow them to exist, phenotypic and genotypic differences in oysters from putative refugia and high-disease areas, and spatial and temporal variability in the effective size of the spawning populations. Resulting data provide inputs to oyster genetics, population dynamics, and larval growth models that interface with a three-dimensional circulation model developed for Delaware Bay. Reconstruction of Lagrangian particle tracks is used to infer transport pathways of oyster larvae and MSX and Dermo disease pathogens. Results emerging from laboratory, field, and modeling studies are providing understanding of long-term changes in Delaware Bay oyster populations that occur as the oyster population responds to climate, environmental, and biological variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, NorwayPublisher:The Oceanography Society Greene, Charles H.; Huntley, Mark E.; Archibald, Ian; Gerber, Léda N.; Sills, Deborah L.; Granados, Joe; Tester, Jefferson W.; Beal, Colin M.; Walsh, Michael J.; Bidigare, Robert R.; Brown, Susan L.; Cochlan, William P.; Johnson, Zackary I.; Lei, Xin Gen; Machesky, Stephen C.; Redalje, Donald; Richardson, Ruth E.; Kiron, Viswanath; Corless, Virginia;handle: 11250/2436441
Climate, energy, and food security are three of the greatest challenges society faces this century. Solutions for mitigating the effects of climate change often conflict with solutions for ensuring society’s future energy and food requirements. For example, BioEnergy with Carbon Capture and Storage (BECCS) has been proposed as an important method for achieving negative CO2 emissions later this century while simultaneously producing renewable energy on a global scale. However, BECCS has many negative environmental consequences for land, nutrient, and water use as well as biodiversity and food production. In contrast, large-scale industrial cultivation of marine microalgae can provide society with a more environmentally favorable approach for meeting the climate goals agreed to at the 2015 Paris Climate Conference, producing the liquid hydrocarbon fuels required by the global transportation sector, and supplying much of the protein necessary to feed a global population approaching 10 billion people.
Oceanography arrow_drop_down Bucknell University: Bucknell Digital CommonsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.91&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oceanography arrow_drop_down Bucknell University: Bucknell Digital CommonsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.91&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:The Oceanography Society Authors: Jennifer Murphy; Christopher I. Measures;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:The Oceanography Society Authors: Christian Koeberl; Pavel S Minyuk; Martin Melles; Julie Brigham-Grette;Successful deep drilling at Lake El'gygytgyn (67°30'N, 172°05'E), in the center of western Beringia, recovered 315 m of sediment, representing the longest time-continuous sediment record of past climate change in the terrestrial Arctic. The core was taken using the DOSECC GLAD800 (Global Lake Drilling 800 m) hydraulic/rotary system engineered for extreme weather, using over-thickened lake ice as a drilling platform. El'gygytgyn is a Yup'ik name that has been variously translated as "the white lake" or "the lake that never thaws." Today, the lake maintains an ice cover nine to 10 months per year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:The Oceanography Society Authors: Willis, Josh K.; Rignot, Eric; Lindstrom, Eric; Nerem, Robert S.;The end of 2016 is an uneasy moment for climate science in the United States. With a new Administration and a new Congress arriving in January 2017, future support for climate science and observing systems is uncertain. Against this backdrop, this special issue of Oceanography on ocean-ice interaction is timely. Although it was not our intent to highlight climate change, the fragile nature of Earth’s cryosphere and how it is responding to a warming world are essential parts of each article. Many aspects of the shrinking cryosphere are not yet understood, but the research described in these pages points to larger-than-anticipated—and alarming—changes to the planet’s large ice sheets, with associated future increases in global sea levels. Importantly, the articles in this special issue demonstrate the value to society of continuing vigorous scientific research that will enable us to better understand our planet’s rapidly changing polar environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:The Oceanography Society Matthew A. Reidenbach; John H. Porter; Karen J. McGlathery; Sergio Fagherazzi; Michael L. Pace; Paolo D'Odorico;The dynamics of shallow-water coastal environments are controlled by external drivers—sea level rise, storms, and sediment and nutrient supplies—and by internal feedbacks. Interactions of biotic processes (vegetation growth, trophic dynamics) and abiotic drivers can lead to nonlinear responses to changing conditions and to the emergence of thresholds, hysteresis, and alternative stable states. We develop a conceptual framework for studying interactions between the dynamics of marshes and habitats in shallow coastal bays with unconsolidated sediments (seagrass, oyster reefs). Using examples primarily from the Virginia Coast Reserve Long Term Ecological Research site, we show that in the subtidal part of the landscape, two alternative stable states can exist—one dominated by seagrass up to a certain depth that represents a tipping point to the second, unvegetated stable state. The depth limit of the seagrass stable state is influenced by (1) the positive feedback of vegetation on reducing sediment suspension and improving the light environment for growth, (2) climate (e.g., temperature), and (3) water quality. Two stable states are also present in intertidal areas, with salt marshes lying above mean sea level and tidal flats below mean sea level. State transitions are driven by sediment availability, sea level rise, the relative strength of wind waves with respect to tidal currents, and the biotic feedback of vegetation on sediment stabilization and accretion. State-change dynamics in one system may propagate to adjacent systems, and this coupling may influence the landscape-scale response to environmental change. Seagrass meadows and oyster reefs affect adjacent marshes both positively (wave attenuation) and negatively (reduced sediment supply), and marsh-edge erosion could negatively influence the light environment for seagrass growth. Forecasting the resilience of coastal ecosystems and the landscape-scale response to environmental change in the next century requires an understanding of nonlinear dynamics, including the possibility of multiple stable states, the coupled evolution of adjacent systems, and potential early warning signs of thresholds of change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:The Oceanography Society Authors: Scripps Institution of Oceanography, University of California; Gille, Sarah; McKee, Darren; Martinson, Douglas;Some of the most rapid melting of ice sheets and ice shelves around Antarctica has occurred where the Antarctic Circumpolar Current (ACC) is in close proximity to the Antarctic continent. Several mechanisms have been hypothesized by which warming trends in the ACC could lead to warmer temperatures on the Antarctic continental shelves and corresponding thinning of ice shelves. One possibility is that a southward shift in the dominant westerly winds has led to a southward shift in the ACC, bringing comparatively warm (1°C–3°C) Circumpolar Deep Water (CDW) in closer contact with Antarctica; however, satellite altimetry does not provide strong evidence for this option. A second possibility is that stronger winds have led to stronger poleward eddy heat transport, bringing more CDW southward. In addition, submarine canyons and winds are hypothesized to be critical for transporting CDW across the continental shelves. The specific mechanisms and the relative roles of westerly winds, easterly winds, and wind-stress curl remain areas of active research.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd7142fData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd7142fData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:The Oceanography Society Funded by:NSF | Constraining the Past and..., NSF | Collaborative Research: G...NSF| Constraining the Past and Future Ocean Sink of Anthropogenic Carbon with Observations ,NSF| Collaborative Research: Global Ocean Repeat Hydrography, Carbon, and Tracer Measurements, 2015-2020John M. Lyman; Paul J. Durack; Timothy P. Boyer; Gregory C. Johnson; P. J. Gleckler; Sarah G. Purkey;The ocean is the primary heat sink of the global climate system. Since 1971, it has been responsible for storing more than 90% ofthe excess heat added to the Earth system by anthropogenic greenhouse-gas emissions. Adding this heat to the ocean contributes substantially to sea level rise and affects vital marine ecosystems. Considering the global ocean’s large role in ongoing climate variability and change, it is a good place to focus in order to understand what observed changes have occurred to date and, by using models, what future changes might arise under continued anthropogenic forcing of the climate system. While sparse measurement coverage leads to enhanced uncertainties with long-term historical estimates of change, modern measurements are beginning to provide the clearest picture yet of ongoing global ocean change. Observations show that the ocean is warming from the near-surface through to the abyss, a conclusion that is strengthened with each new analysis. In this assessment, we revisit observation- and model-based estimates of ocean warming from the industrial era to the present and show a consistent, full-depth pattern of change over the observed record that is likely to continue at an ever-increasing pace if effective actions to reduce greenhouse-gas emissions are not taken.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2018.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2018.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:The Oceanography Society Funded by:NSF | Collaborative Research: A..., NSF | Collaborative Research: G..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Analysis of Continental Shelf Ecosystems: Food Web Structure and Functional Relations ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC Regions ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC Regions ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets for US-GLOBEC RegionsRuzicka, James J.; Steele, John H.; Gaichas, Sarah K.; Ballerini, Tosca; Gifford, Dian J.; Brodeur, Richard D.; Hofmann, Eileen E.;handle: 1912/6589
End-to-end models were constructed to examine and compare the trophic structure and energy flow in coastal shelf ecosystems of four US Global Ocean Ecosystem Dynamics (GLOBEC) study regions: the Northern California Current, the Central Gulf of Alaska, Georges Bank, and the Southwestern Antarctic Peninsula. High-quality data collected on system components and processes over the life of the program were used as input to the models. Although the US GLOBEC program was species-centric, focused on the study of a selected set of target species of ecological or economic importance, we took a broader community-level approach to describe end-to-end energy flow, from nutrient input to fishery production. We built four end-to-end models that were structured similarly in terms of functional group composition and time scale. The models were used to identify the mid-trophic level groups that place the greatest demand on lower trophic level production while providing the greatest support to higher trophic level production. In general, euphausiids and planktivorous forage fishes were the critical energy-transfer nodes; however, some differences between ecosystems are apparent. For example, squid provide an important alternative energy pathway to forage fish, moderating the effects of changes to forage fish abundance in scenario analyses in the Central Gulf of Alaska. In the Northern California Current, large scyphozoan jellyfish are important consumers of plankton production, but can divert energy from the rest of the food web when abundant.
Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:The Oceanography Society Authors: Paul J. Durack;Alterations to the global water cycle are of concern as Earth’s climate changes. Although policymakers are mainly interested in changes to terrestrial rainfall—where, when, and how much it’s going to rain—the largest component of the global water cycle operates over the ocean where nearly all of Earth’s free water resides. Approximately 80% of Earth’s surface freshwater fluxes occur over the ocean; its surface salinity responds to changing evaporation and precipitation patterns by displaying salty or fresh anomalies. The salinity field integrates sporadic surface fluxes over time, and after accounting for ocean circulation and mixing, salinity changes resulting from long-term alterations to surface evaporation and precipitation are evident. Thus, ocean salinity measurements can provide insights into water-cycle operation and its long-term change. Although poor observational coverage and an incomplete view of the interaction of all water-cycle components limits our understanding, climate models are beginning to provide insights that are complementing observations. This new information suggests that the global water cycle is rapidly intensifying.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2015.03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 155 citations 155 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2015.03&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:The Oceanography Society Eileen Hofmann; David Bushek; Susan Ford; Ximing Guo; Dale Haidvogel; Dennis Hedgecock; John Klinck; Coren Milbury; Diego Narvaez; Eric Powell; Yongping Wang; Zhiren Wang; John Wilkin; Liusuo Zhang;Delaware Bay oyster (Crassostrea virginica) populations are influenced by two lethal parasites that cause Dermo and MSX diseases. As part of the US National Science Foundation Ecology of Infectious Diseases initiative, a program developed for Delaware Bay focuses on understanding how oyster population genetics and population dynamics interact with the environment and these parasites to structure the host populations, and how these interactions might be modified by climate change. Laboratory and field studies undertaken during this program include identifying genes related to MSX and Dermo disease resistance, potential regions for refugia and the mechanisms that allow them to exist, phenotypic and genotypic differences in oysters from putative refugia and high-disease areas, and spatial and temporal variability in the effective size of the spawning populations. Resulting data provide inputs to oyster genetics, population dynamics, and larval growth models that interface with a three-dimensional circulation model developed for Delaware Bay. Reconstruction of Lagrangian particle tracks is used to infer transport pathways of oyster larvae and MSX and Dermo disease pathogens. Results emerging from laboratory, field, and modeling studies are providing understanding of long-term changes in Delaware Bay oyster populations that occur as the oyster population responds to climate, environmental, and biological variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, NorwayPublisher:The Oceanography Society Greene, Charles H.; Huntley, Mark E.; Archibald, Ian; Gerber, Léda N.; Sills, Deborah L.; Granados, Joe; Tester, Jefferson W.; Beal, Colin M.; Walsh, Michael J.; Bidigare, Robert R.; Brown, Susan L.; Cochlan, William P.; Johnson, Zackary I.; Lei, Xin Gen; Machesky, Stephen C.; Redalje, Donald; Richardson, Ruth E.; Kiron, Viswanath; Corless, Virginia;handle: 11250/2436441
Climate, energy, and food security are three of the greatest challenges society faces this century. Solutions for mitigating the effects of climate change often conflict with solutions for ensuring society’s future energy and food requirements. For example, BioEnergy with Carbon Capture and Storage (BECCS) has been proposed as an important method for achieving negative CO2 emissions later this century while simultaneously producing renewable energy on a global scale. However, BECCS has many negative environmental consequences for land, nutrient, and water use as well as biodiversity and food production. In contrast, large-scale industrial cultivation of marine microalgae can provide society with a more environmentally favorable approach for meeting the climate goals agreed to at the 2015 Paris Climate Conference, producing the liquid hydrocarbon fuels required by the global transportation sector, and supplying much of the protein necessary to feed a global population approaching 10 billion people.
Oceanography arrow_drop_down Bucknell University: Bucknell Digital CommonsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.91&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oceanography arrow_drop_down Bucknell University: Bucknell Digital CommonsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.91&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:The Oceanography Society Authors: Jennifer Murphy; Christopher I. Measures;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:The Oceanography Society Authors: Christian Koeberl; Pavel S Minyuk; Martin Melles; Julie Brigham-Grette;Successful deep drilling at Lake El'gygytgyn (67°30'N, 172°05'E), in the center of western Beringia, recovered 315 m of sediment, representing the longest time-continuous sediment record of past climate change in the terrestrial Arctic. The core was taken using the DOSECC GLAD800 (Global Lake Drilling 800 m) hydraulic/rotary system engineered for extreme weather, using over-thickened lake ice as a drilling platform. El'gygytgyn is a Yup'ik name that has been variously translated as "the white lake" or "the lake that never thaws." Today, the lake maintains an ice cover nine to 10 months per year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:The Oceanography Society Authors: Willis, Josh K.; Rignot, Eric; Lindstrom, Eric; Nerem, Robert S.;The end of 2016 is an uneasy moment for climate science in the United States. With a new Administration and a new Congress arriving in January 2017, future support for climate science and observing systems is uncertain. Against this backdrop, this special issue of Oceanography on ocean-ice interaction is timely. Although it was not our intent to highlight climate change, the fragile nature of Earth’s cryosphere and how it is responding to a warming world are essential parts of each article. Many aspects of the shrinking cryosphere are not yet understood, but the research described in these pages points to larger-than-anticipated—and alarming—changes to the planet’s large ice sheets, with associated future increases in global sea levels. Importantly, the articles in this special issue demonstrate the value to society of continuing vigorous scientific research that will enable us to better understand our planet’s rapidly changing polar environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:The Oceanography Society Matthew A. Reidenbach; John H. Porter; Karen J. McGlathery; Sergio Fagherazzi; Michael L. Pace; Paolo D'Odorico;The dynamics of shallow-water coastal environments are controlled by external drivers—sea level rise, storms, and sediment and nutrient supplies—and by internal feedbacks. Interactions of biotic processes (vegetation growth, trophic dynamics) and abiotic drivers can lead to nonlinear responses to changing conditions and to the emergence of thresholds, hysteresis, and alternative stable states. We develop a conceptual framework for studying interactions between the dynamics of marshes and habitats in shallow coastal bays with unconsolidated sediments (seagrass, oyster reefs). Using examples primarily from the Virginia Coast Reserve Long Term Ecological Research site, we show that in the subtidal part of the landscape, two alternative stable states can exist—one dominated by seagrass up to a certain depth that represents a tipping point to the second, unvegetated stable state. The depth limit of the seagrass stable state is influenced by (1) the positive feedback of vegetation on reducing sediment suspension and improving the light environment for growth, (2) climate (e.g., temperature), and (3) water quality. Two stable states are also present in intertidal areas, with salt marshes lying above mean sea level and tidal flats below mean sea level. State transitions are driven by sediment availability, sea level rise, the relative strength of wind waves with respect to tidal currents, and the biotic feedback of vegetation on sediment stabilization and accretion. State-change dynamics in one system may propagate to adjacent systems, and this coupling may influence the landscape-scale response to environmental change. Seagrass meadows and oyster reefs affect adjacent marshes both positively (wave attenuation) and negatively (reduced sediment supply), and marsh-edge erosion could negatively influence the light environment for seagrass growth. Forecasting the resilience of coastal ecosystems and the landscape-scale response to environmental change in the next century requires an understanding of nonlinear dynamics, including the possibility of multiple stable states, the coupled evolution of adjacent systems, and potential early warning signs of thresholds of change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:The Oceanography Society Authors: Scripps Institution of Oceanography, University of California; Gille, Sarah; McKee, Darren; Martinson, Douglas;Some of the most rapid melting of ice sheets and ice shelves around Antarctica has occurred where the Antarctic Circumpolar Current (ACC) is in close proximity to the Antarctic continent. Several mechanisms have been hypothesized by which warming trends in the ACC could lead to warmer temperatures on the Antarctic continental shelves and corresponding thinning of ice shelves. One possibility is that a southward shift in the dominant westerly winds has led to a southward shift in the ACC, bringing comparatively warm (1°C–3°C) Circumpolar Deep Water (CDW) in closer contact with Antarctica; however, satellite altimetry does not provide strong evidence for this option. A second possibility is that stronger winds have led to stronger poleward eddy heat transport, bringing more CDW southward. In addition, submarine canyons and winds are hypothesized to be critical for transporting CDW across the continental shelves. The specific mechanisms and the relative roles of westerly winds, easterly winds, and wind-stress curl remain areas of active research.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd7142fData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd7142fData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2016.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu