- home
- Advanced Search
- Energy Research
- 15. Life on land
- US
- arXiv.org e-Print Archive
- Energy Research
- 15. Life on land
- US
- arXiv.org e-Print Archive
description Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022Publisher:Springer Science and Business Media LLC Authors: Enrico Ser-Giacomi; Ricardo Martinez-Garcia; Stephanie Dutkiewicz; Michael J. Follows;AbstractMarine plankton play a crucial role in carbon storage, global climate, and ecosystem function. Planktonic ecosystems are embedded in patches of water that are continuously moving, stretching, and diluting. These processes drive inhomegeneities on a range of scales, with implications for the integrated ecosystem properties, but are hard to characterize. We present a theoretical framework that accounts for all these aspects; tracking the water patch hosting a drifting ecosystem along with its physical, environmental, and biochemical features. The theory resolves patch dilution and internal physical mixing as a function of oceanic strain and diffusion. Ecological dynamics are parameterized by an idealized nutrient and phytoplankton population and we specifically capture the time evolution of the biochemical spatial variances to represent within-patch heterogeneity. We find that, depending only on the physical processes to which the water patch is subjected, the plankton biomass response to a resource perturbation can vary in size up to six times. This work indicates that we must account for these processes when interpreting and modeling marine ecosystems and provides a framework with which to do so.
Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAPreprint . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41469-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAPreprint . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41469-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2017Embargo end date: 01 Jan 2016 United States, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | What are Sustainable Clim...NSF| What are Sustainable Climate-Risk Management Strategies?Chris E. Forest; Klaus Keller; Klaus Keller; Tony E. Wong; David Pollard; Gary Shaffer; Gary Shaffer; Kelsey L. Ruckert; Yawen Guan;The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks. v1: 16 pages, 4 figures, 7 supplementary files; v2: 15 pages, 4 figures, 7 supplementary files, corrected typos, revised title, updated according to revisions made through publication process
PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0170052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0170052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2011Embargo end date: 01 Jan 2010 United Kingdom, United StatesPublisher:Wiley Kelly, Colleen K.; Blundell, Stephen J.; Bowler, Michael G.; Fox, G. A.; Harvey, Paul A.; Lomas, Mark R.; Woodward, F. Ian;Theoretically, communities at or near their equilibrium species number resist entry of new species. Such 'biotic resistance' recently has been questioned because of successful entry of alien species into diverse natural communities. Data on 10,409 naturalizations of 5350 plant species over 16 sites dispersed globally show exponential distributions for both species over sites and sites over number of species shared. These exponentials signal a statistical mechanics of species distribution, assuming two conditions. First, species and sites are equivalent, either identical ('neutral'), or so complex that the chance a species is in the right place at the right time is vanishingly small ('idiosyncratic'); the range of species and sites in our data disallows a neutral explanation. Secondly, the total number of naturalisations is fixed in any era by a 'regulator'. Previous correlation of species naturalization rates with net primary productivity over time suggests that regulator is related to productivity. We conclude that biotic resistance is a moving ceiling, with resistance controlled by productivity. The general observation that the majority of species occur naturally at only a few sites but only a few at many now has a quantitative [exponential] character, offering the study of species' distributions a previously unavailable rigor. 30 pages, including 4 figures, 1 table and 4 appendices
New Phytologist arrow_drop_down New PhytologistArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteUniversity of South Florida St. Petersburg: Digital USFSPArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2011.03721.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteUniversity of South Florida St. Petersburg: Digital USFSPArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2011.03721.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020Publisher:MDPI AG Yusuke Kumakoshi; Sau Yee Chan; Hideki Koizumi; Xiaojiang Li; Yuji Yoshimura;arXiv: 2008.00229
Urban greenery is considered an important factor in sustainable development and people’s quality of life in the city. To account for urban green vegetation, Green View Index (GVI), which captures the visibility of greenery at street level, has been used. However, as GVI is point-based estimation, when aggregated at an area-level by mean or median, it is sensitive to the location of sampled sites, overweighing the values of densely located sites. To make estimation at area-level more robust, this study aims to (1) propose an improved indicator of greenery visibility (standardized GVI; sGVI), and (2) quantify the relation between sGVI and other green metrics. Experiment on an hypothetical setting confirmed that bias from site location can be mitigated by sGVI. Furthermore, comparing sGVI and Normalized Difference Vegetation Index (NDVI) at the city block level in Yokohama city, Japan, we found that sGVI captures the presence of vegetation better in the city center, whereas NDVI is better at capturing vegetation in parks and forests, principally due to the different viewpoints (eye-level perception and top-down eyesight). These tools provide a foundation for accessing the effect of vegetation in urban landscapes in a more robust matter, enabling comparison on any arbitrary geographical scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12187434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12187434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 FrancePublisher:Wiley Nicolas Dubos; Maxime Lenormand; Leandro Castello; Thierry Oberdorff; Antoine Guisan; Sandra Luque;arXiv: 2202.05142
Abstract The Amazon floodplains represent important surfaces of highly valuable ecosystems, yet they remain neglected from protected areas. Although the efficiency of the protected area network of the Amazon basin may be jeopardized by climate change, floodplains are exposed to important consequences of climate change but are omitted from species distribution models and protection gap analyses. The present and future (2070) distribution of the giant bony‐tongue fish Arapaima spp. (Arapaimidae) was modelled accounting for climate and habitat requirements, and with a consideration of dam presence (already existing and planned constructions) and hydroperiod (high‐ and low‐water stages). The amount of suitable environment that falls inside and outside the current network of protected areas was quantified to identify spatial conservation gaps. We predict that climate change will cause a decline in environmental suitability by 16.6% during the high‐water stage, and by 19.4% during the low‐water stage. About 70% of the suitable environments of Arapaima spp. remain currently unprotected. The gap is higher by 0.7% during the low‐water stage. The lack of protection is likely to increase by 5% with future climate change effects. Both existing and projected dam constructions may hamper population flows between the central, Bolivian and Peruvian parts of the basin. We highlight protection gaps mostly in the south‐western part of the basin and recommend the extension of the current network of protected areas in the floodplains of the upper Ucayali, Juruà and Purus rivers and their tributaries. This study has shown the importance of integrating hydroperiod and dispersal barriers in forecasting the distribution of freshwater fish species, and stresses the urgent need to integrate floodplains within the protected area networks.
arXiv.org e-Print Ar... arrow_drop_down Aquatic Conservation Marine and Freshwater EcosystemsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.3877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down Aquatic Conservation Marine and Freshwater EcosystemsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.3877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010Publisher:Wiley Authors: Victor G. Gorshkov; Anastassia M. Makarieva; Bai-Lian Li;The global environmental imperative demands urgent actions on ecological stabilization, yet the global scale of such actions is persistently insufficient. This calls for investigating why the world economy appears to be so fearful of any potential environmental expenditure. Using the formalism of Lyapunov potential function it is shown that the stability principles for biomass in the ecosystem and for employment in economics are mathematically similar. The ecosystem has a stable and unstable stationary state with high (forest) and low (grasslands) biomass, respectively. In economics, there is a stable stationary state with high employment in mass production of conventional goods sold at low cost price, and an unstable stationary state with lower employment in production of novel products of technological progress sold at higher prices. An additional stable state is described for economics with very low employment in production of life essentials, such as energy and raw materials that are sold at greatly inflated prices. In this state the civilization pays 10% of global GDP for energy produced by a negligible minority of the working population (currently ∼0.2%) and sold at prices exceeding the cost price by 40 times, a state when any extra expenditures of whatever nature appear intolerable. The reason lies in the fundamental shortcoming of economic theory, which allows for economic ownership over energy sources. This is shown to be equivalent to equating measurable variables of different dimensions (stores and fluxes), which leads to effective violation of the laws of energy and matter conservation in modern economics.
Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1749-6632.2009.05400.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1749-6632.2009.05400.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2015Embargo end date: 01 Jan 2014 SpainPublisher:Elsevier BV Authors: Ricard V. Solé; Ricard V. Solé; Ricard V. Solé;Our planet is experiencing an accelerated process of change associated to a variety of anthropogenic phenomena. The future of this transformation is uncertain, but there is general agreement about its negative unfolding that might threaten our own survival. Furthermore, the pace of the expected changes is likely to be abrupt: catastrophic shifts might be the most likely outcome of this ongoing, apparently slow process. Although different strategies for geo-engineering the planet have been advanced, none seem likely to safely revert the large-scale problems associated to carbon dioxide accumulation or ecosystem degradation. An alternative possibility considered here is inspired in the rapidly growing potential for engineering living systems. It would involve designing synthetic organisms capable of reproducing and expanding to large geographic scales with the goal of achieving a long-term or a transient restoration of ecosystem-level homeostasis. Such a regional or even planetary-scale engineering would have to deal with the complexity of our biosphere. It will require not only a proper design of organisms but also understanding their place within ecological networks and their evolvability. This is a likely future scenario that will require integration of ideas coming from currently weakly connected domains, including synthetic biology, ecological and genome engineering, evolutionary theory, climate science, biogeography and invasion ecology, among others. 21 pages, 3 figures
Ecological Complexit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecocom.2015.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 28 Powered bymore_vert Ecological Complexit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecocom.2015.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article , Other literature type 2020Embargo end date: 01 Jan 2020Publisher:Zenodo John C. Priscu; Paul Andrew Mayewski; Corey Jaskolski; Bibek Giri; Saraju K. Baidya; Baker Perry; Mary Hubbard; Tom Matthews; Richard C. Thompson; Heather Clifford; Imogen E. Napper; Kenneth Broad; Subash Tuladhar; Mariusz Potocki; Wei Li; Kimberley R. Miner; Kimberley R. Miner; Heather Koldeway; Anata Gajurel; Alex Tait;In April and May 2019, as a part of the National Geographic and Roxel Perpetual Planet Everest Expedition, the most interdisciplinary scientific ever was launched. This research identified changing dynamics, including emergent risks resulting from natural and anthropogenic change to the natural system. We have identified compounded risks to ecosystem and human health, geologic hazards, and changing climate conditions that impact the local community, climbers, and trekkeers in the future. This review brings together perspectives from across the biological, geological, and health sciences to better understand emergent risks on Mt. Everest and in the Khumbu region. Understanding and mitigating these risks is critical for the ~10,000 people living in the Khumbu region, as well as the thousands of visiting trekkers and the hundreds of climbers who attempt to summit each year. 21 pages, 2 figures
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3972342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3972342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2019 ItalyPublisher:Elsevier BV Funded by:EC | ECOPOTENTIAL, EC | eLTER, EC | Advance_eLTEREC| ECOPOTENTIAL ,EC| eLTER ,EC| Advance_eLTERRuben Sommaruga; Michele Freppaz; Roberto Canullo; Jean-Paul Theurillat; Maurizio Cutini; B. Petriccione; Stefano Chelli; Manuela Winkler; Alberto Scotti; Andrea Magnani; Isabella Bertani; U. Morra di Cella; Pascal Vittoz; Davide Viglietti; Alice Brambilla; Francesco Porro; Roland Psenner; Brigitta Erschbamer; Edoardo Cremonese; Ludovico Frate; Roberta Bottarin; M. Di Musciano; Angela Stanisci; Giorgio Matteucci; Luca Mazzola; Danilo Godone; Marcello Tomaselli; Giampaolo Rossetti; Harald Pauli; Ulrike Tappeiner; Maria Laura Carranza; Martina Petey; R. Viterbi; Michel Isabellon; Michel Isabellon; Marco Iocchi; C. Cerrato; Michele Carbognani; Michela Rogora;Mountain ecosystems are sensitive indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers. Mountain research sites within the LTER (Long-Term Ecosystem Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from long-term ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems, for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, ii) carrying out further studies, with fine spatial and temporal resolutions to improve understanding of responses to extreme events, and iii) increasing comparability and standardizing protocols across networks to clarify local from global patterns. 30 pages plus references, 7 figures, 23 tables Paper from the LTER Europe and ILTER network
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.12.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 189 citations 189 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.12.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2019Embargo end date: 01 Jan 2018Publisher:Mary Ann Liebert Inc Authors: David C. Catling; S. F. Sholes; Joshua Krissansen-Totton;Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H2 in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H2- consuming metabolisms would evolve on Mars, the persistence of CO and H2 in the martian atmosphere set limits on subsurface metabolic activity. Here, we constrain such maximum subsurface metabolic activity on Mars using a 1-D photochemical model with a hypothetical global biological sink on atmospheric CO and H2. We increase the biological sink until the model atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5e8 molecules/cm^2/s for CO and 1.9e8 molecules/cm^2/s for H2. These covert to a maximum metabolizing biomass of <10^27 cells or <2e11 kg, equivalent to <1e-4 to 1e-5 of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from Curiosity. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O2 and H2-O2 may constitute antibiosignatures, which may be relevant to excluding life on exoplanets. 30 pages, 4 figures, 3 tables. Accepted for publication in Astrobiology
Astrobiology arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1089/ast.2018.1835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Astrobiology arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1089/ast.2018.1835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022Publisher:Springer Science and Business Media LLC Authors: Enrico Ser-Giacomi; Ricardo Martinez-Garcia; Stephanie Dutkiewicz; Michael J. Follows;AbstractMarine plankton play a crucial role in carbon storage, global climate, and ecosystem function. Planktonic ecosystems are embedded in patches of water that are continuously moving, stretching, and diluting. These processes drive inhomegeneities on a range of scales, with implications for the integrated ecosystem properties, but are hard to characterize. We present a theoretical framework that accounts for all these aspects; tracking the water patch hosting a drifting ecosystem along with its physical, environmental, and biochemical features. The theory resolves patch dilution and internal physical mixing as a function of oceanic strain and diffusion. Ecological dynamics are parameterized by an idealized nutrient and phytoplankton population and we specifically capture the time evolution of the biochemical spatial variances to represent within-patch heterogeneity. We find that, depending only on the physical processes to which the water patch is subjected, the plankton biomass response to a resource perturbation can vary in size up to six times. This work indicates that we must account for these processes when interpreting and modeling marine ecosystems and provides a framework with which to do so.
Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAPreprint . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41469-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAPreprint . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41469-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2017Embargo end date: 01 Jan 2016 United States, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | What are Sustainable Clim...NSF| What are Sustainable Climate-Risk Management Strategies?Chris E. Forest; Klaus Keller; Klaus Keller; Tony E. Wong; David Pollard; Gary Shaffer; Gary Shaffer; Kelsey L. Ruckert; Yawen Guan;The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks. v1: 16 pages, 4 figures, 7 supplementary files; v2: 15 pages, 4 figures, 7 supplementary files, corrected typos, revised title, updated according to revisions made through publication process
PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0170052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0170052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2011Embargo end date: 01 Jan 2010 United Kingdom, United StatesPublisher:Wiley Kelly, Colleen K.; Blundell, Stephen J.; Bowler, Michael G.; Fox, G. A.; Harvey, Paul A.; Lomas, Mark R.; Woodward, F. Ian;Theoretically, communities at or near their equilibrium species number resist entry of new species. Such 'biotic resistance' recently has been questioned because of successful entry of alien species into diverse natural communities. Data on 10,409 naturalizations of 5350 plant species over 16 sites dispersed globally show exponential distributions for both species over sites and sites over number of species shared. These exponentials signal a statistical mechanics of species distribution, assuming two conditions. First, species and sites are equivalent, either identical ('neutral'), or so complex that the chance a species is in the right place at the right time is vanishingly small ('idiosyncratic'); the range of species and sites in our data disallows a neutral explanation. Secondly, the total number of naturalisations is fixed in any era by a 'regulator'. Previous correlation of species naturalization rates with net primary productivity over time suggests that regulator is related to productivity. We conclude that biotic resistance is a moving ceiling, with resistance controlled by productivity. The general observation that the majority of species occur naturally at only a few sites but only a few at many now has a quantitative [exponential] character, offering the study of species' distributions a previously unavailable rigor. 30 pages, including 4 figures, 1 table and 4 appendices
New Phytologist arrow_drop_down New PhytologistArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteUniversity of South Florida St. Petersburg: Digital USFSPArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2011.03721.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteUniversity of South Florida St. Petersburg: Digital USFSPArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2011.03721.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020Publisher:MDPI AG Yusuke Kumakoshi; Sau Yee Chan; Hideki Koizumi; Xiaojiang Li; Yuji Yoshimura;arXiv: 2008.00229
Urban greenery is considered an important factor in sustainable development and people’s quality of life in the city. To account for urban green vegetation, Green View Index (GVI), which captures the visibility of greenery at street level, has been used. However, as GVI is point-based estimation, when aggregated at an area-level by mean or median, it is sensitive to the location of sampled sites, overweighing the values of densely located sites. To make estimation at area-level more robust, this study aims to (1) propose an improved indicator of greenery visibility (standardized GVI; sGVI), and (2) quantify the relation between sGVI and other green metrics. Experiment on an hypothetical setting confirmed that bias from site location can be mitigated by sGVI. Furthermore, comparing sGVI and Normalized Difference Vegetation Index (NDVI) at the city block level in Yokohama city, Japan, we found that sGVI captures the presence of vegetation better in the city center, whereas NDVI is better at capturing vegetation in parks and forests, principally due to the different viewpoints (eye-level perception and top-down eyesight). These tools provide a foundation for accessing the effect of vegetation in urban landscapes in a more robust matter, enabling comparison on any arbitrary geographical scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12187434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12187434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 FrancePublisher:Wiley Nicolas Dubos; Maxime Lenormand; Leandro Castello; Thierry Oberdorff; Antoine Guisan; Sandra Luque;arXiv: 2202.05142
Abstract The Amazon floodplains represent important surfaces of highly valuable ecosystems, yet they remain neglected from protected areas. Although the efficiency of the protected area network of the Amazon basin may be jeopardized by climate change, floodplains are exposed to important consequences of climate change but are omitted from species distribution models and protection gap analyses. The present and future (2070) distribution of the giant bony‐tongue fish Arapaima spp. (Arapaimidae) was modelled accounting for climate and habitat requirements, and with a consideration of dam presence (already existing and planned constructions) and hydroperiod (high‐ and low‐water stages). The amount of suitable environment that falls inside and outside the current network of protected areas was quantified to identify spatial conservation gaps. We predict that climate change will cause a decline in environmental suitability by 16.6% during the high‐water stage, and by 19.4% during the low‐water stage. About 70% of the suitable environments of Arapaima spp. remain currently unprotected. The gap is higher by 0.7% during the low‐water stage. The lack of protection is likely to increase by 5% with future climate change effects. Both existing and projected dam constructions may hamper population flows between the central, Bolivian and Peruvian parts of the basin. We highlight protection gaps mostly in the south‐western part of the basin and recommend the extension of the current network of protected areas in the floodplains of the upper Ucayali, Juruà and Purus rivers and their tributaries. This study has shown the importance of integrating hydroperiod and dispersal barriers in forecasting the distribution of freshwater fish species, and stresses the urgent need to integrate floodplains within the protected area networks.
arXiv.org e-Print Ar... arrow_drop_down Aquatic Conservation Marine and Freshwater EcosystemsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.3877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down Aquatic Conservation Marine and Freshwater EcosystemsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteCIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.3877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010Publisher:Wiley Authors: Victor G. Gorshkov; Anastassia M. Makarieva; Bai-Lian Li;The global environmental imperative demands urgent actions on ecological stabilization, yet the global scale of such actions is persistently insufficient. This calls for investigating why the world economy appears to be so fearful of any potential environmental expenditure. Using the formalism of Lyapunov potential function it is shown that the stability principles for biomass in the ecosystem and for employment in economics are mathematically similar. The ecosystem has a stable and unstable stationary state with high (forest) and low (grasslands) biomass, respectively. In economics, there is a stable stationary state with high employment in mass production of conventional goods sold at low cost price, and an unstable stationary state with lower employment in production of novel products of technological progress sold at higher prices. An additional stable state is described for economics with very low employment in production of life essentials, such as energy and raw materials that are sold at greatly inflated prices. In this state the civilization pays 10% of global GDP for energy produced by a negligible minority of the working population (currently ∼0.2%) and sold at prices exceeding the cost price by 40 times, a state when any extra expenditures of whatever nature appear intolerable. The reason lies in the fundamental shortcoming of economic theory, which allows for economic ownership over energy sources. This is shown to be equivalent to equating measurable variables of different dimensions (stores and fluxes), which leads to effective violation of the laws of energy and matter conservation in modern economics.
Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1749-6632.2009.05400.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1749-6632.2009.05400.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2015Embargo end date: 01 Jan 2014 SpainPublisher:Elsevier BV Authors: Ricard V. Solé; Ricard V. Solé; Ricard V. Solé;Our planet is experiencing an accelerated process of change associated to a variety of anthropogenic phenomena. The future of this transformation is uncertain, but there is general agreement about its negative unfolding that might threaten our own survival. Furthermore, the pace of the expected changes is likely to be abrupt: catastrophic shifts might be the most likely outcome of this ongoing, apparently slow process. Although different strategies for geo-engineering the planet have been advanced, none seem likely to safely revert the large-scale problems associated to carbon dioxide accumulation or ecosystem degradation. An alternative possibility considered here is inspired in the rapidly growing potential for engineering living systems. It would involve designing synthetic organisms capable of reproducing and expanding to large geographic scales with the goal of achieving a long-term or a transient restoration of ecosystem-level homeostasis. Such a regional or even planetary-scale engineering would have to deal with the complexity of our biosphere. It will require not only a proper design of organisms but also understanding their place within ecological networks and their evolvability. This is a likely future scenario that will require integration of ideas coming from currently weakly connected domains, including synthetic biology, ecological and genome engineering, evolutionary theory, climate science, biogeography and invasion ecology, among others. 21 pages, 3 figures
Ecological Complexit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecocom.2015.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 28 Powered bymore_vert Ecological Complexit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecocom.2015.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article , Other literature type 2020Embargo end date: 01 Jan 2020Publisher:Zenodo John C. Priscu; Paul Andrew Mayewski; Corey Jaskolski; Bibek Giri; Saraju K. Baidya; Baker Perry; Mary Hubbard; Tom Matthews; Richard C. Thompson; Heather Clifford; Imogen E. Napper; Kenneth Broad; Subash Tuladhar; Mariusz Potocki; Wei Li; Kimberley R. Miner; Kimberley R. Miner; Heather Koldeway; Anata Gajurel; Alex Tait;In April and May 2019, as a part of the National Geographic and Roxel Perpetual Planet Everest Expedition, the most interdisciplinary scientific ever was launched. This research identified changing dynamics, including emergent risks resulting from natural and anthropogenic change to the natural system. We have identified compounded risks to ecosystem and human health, geologic hazards, and changing climate conditions that impact the local community, climbers, and trekkeers in the future. This review brings together perspectives from across the biological, geological, and health sciences to better understand emergent risks on Mt. Everest and in the Khumbu region. Understanding and mitigating these risks is critical for the ~10,000 people living in the Khumbu region, as well as the thousands of visiting trekkers and the hundreds of climbers who attempt to summit each year. 21 pages, 2 figures
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3972342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3972342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2019 ItalyPublisher:Elsevier BV Funded by:EC | ECOPOTENTIAL, EC | eLTER, EC | Advance_eLTEREC| ECOPOTENTIAL ,EC| eLTER ,EC| Advance_eLTERRuben Sommaruga; Michele Freppaz; Roberto Canullo; Jean-Paul Theurillat; Maurizio Cutini; B. Petriccione; Stefano Chelli; Manuela Winkler; Alberto Scotti; Andrea Magnani; Isabella Bertani; U. Morra di Cella; Pascal Vittoz; Davide Viglietti; Alice Brambilla; Francesco Porro; Roland Psenner; Brigitta Erschbamer; Edoardo Cremonese; Ludovico Frate; Roberta Bottarin; M. Di Musciano; Angela Stanisci; Giorgio Matteucci; Luca Mazzola; Danilo Godone; Marcello Tomaselli; Giampaolo Rossetti; Harald Pauli; Ulrike Tappeiner; Maria Laura Carranza; Martina Petey; R. Viterbi; Michel Isabellon; Michel Isabellon; Marco Iocchi; C. Cerrato; Michele Carbognani; Michela Rogora;Mountain ecosystems are sensitive indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers. Mountain research sites within the LTER (Long-Term Ecosystem Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from long-term ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems, for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, ii) carrying out further studies, with fine spatial and temporal resolutions to improve understanding of responses to extreme events, and iii) increasing comparability and standardizing protocols across networks to clarify local from global patterns. 30 pages plus references, 7 figures, 23 tables Paper from the LTER Europe and ILTER network
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.12.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 189 citations 189 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: DataciteThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.12.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2019Embargo end date: 01 Jan 2018Publisher:Mary Ann Liebert Inc Authors: David C. Catling; S. F. Sholes; Joshua Krissansen-Totton;Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H2 in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H2- consuming metabolisms would evolve on Mars, the persistence of CO and H2 in the martian atmosphere set limits on subsurface metabolic activity. Here, we constrain such maximum subsurface metabolic activity on Mars using a 1-D photochemical model with a hypothetical global biological sink on atmospheric CO and H2. We increase the biological sink until the model atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5e8 molecules/cm^2/s for CO and 1.9e8 molecules/cm^2/s for H2. These covert to a maximum metabolizing biomass of <10^27 cells or <2e11 kg, equivalent to <1e-4 to 1e-5 of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from Curiosity. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O2 and H2-O2 may constitute antibiosignatures, which may be relevant to excluding life on exoplanets. 30 pages, 4 figures, 3 tables. Accepted for publication in Astrobiology
Astrobiology arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1089/ast.2018.1835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Astrobiology arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1089/ast.2018.1835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu