- home
- Advanced Search
- Energy Research
- other engineering and technologies
- Energy Research
- other engineering and technologies
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Marcin Zieliński; Wojciech Janczukowicz; Marcin Dębowski;pmid: 17976980
Main goal of the study was present the results of some respirometric measurements of activated sludge biodegrading the substrate in the wastewater originated in selected sections of the dairy processing line. The following dairy production effluents were analyzed in the research: the pumping station wastewater (combined wastewater from all the sections of the dairy factory), the apparatus room wastewater, the butter section wastewater, the milk reception point wastewater, the cheese section wastewater and the cottage cheese section wastewater. Apart from that, sweet and sour whey, which are secondary products of hard cheese and cottage cheese production, respectively, was the subject of the research. The amount of organic matter being oxidized during a 5-day measurement session was calculated on 1g of the activated sludge biomass. The research was conducted at the temperature of 20 degrees C and 35 degrees C at the applied sludge loading rate of A'=0.2 g BOD g(-1) dry mass d(-1), which ensured complete biodegradation. The results indicated a correlation between a technological process of dairy processing, an ultimate outcome of which was the wastewater analyzed, and dairy wastewater biodegradability. The results confirmed that all dairy processing effluents can be treated together, with the exception of whey, whose complex biodegradation demands may cause too much burden to any wastewater treatment technological system and thus should be managed within a separate installation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Marcin Dębowski; Marta Kisielewska; Joanna Kazimierowicz; Marcin Zieliński;doi: 10.3390/en16010571
Production and consumption of confectionery products have increased worldwide, thus, effective management of wastewater produced is now an important issue. The confectionery high-load sewage was explored for biogas production in an innovative-design anaerobic reactor with labyrinth flow. The experimental studies were focused on determining the best technological parameters of anaerobic digestion for the effective removal of pollutants and obtaining high CH4 production efficiency. It was found that organic loading rate (OLR) of 5.0–6.0 g COD/L·d contributed to the highest CH4 generation of 94.7 ± 6.1 to 97.1 ± 5.1 L CH4/d, which corresponded to a high COD removal of 75.4 ± 1.5 to 75.0 ± 0.6%. Under such conditions the FOS/TAC ratio was below 0.4, indicating reactor stability, and pH was on the level of 7.15 ± 0.04 at OLR 5.0 g COD/L·d and 7.04 ± 0.07 at OLR 6.0 g COD/L·d.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Marcin Dębowski; Marcin Zieliński; Anna Nowicka; Joanna Kazimierowicz;doi: 10.3390/en17174207
To date, microwave radiation has been successfully used to support the chemical hydrolysis of organic substrates in the laboratory. There is a lack of studies on large-scale plants that would provide the basis for a reliable evaluation of this technology. The aim of the research was to determine the effectiveness of using microwave radiation to support the acidic and alkaline thermohydrolysis of lignocellulosic biomass prior to anaerobic digestion on a semi-industrial scale. Regardless of the pretreatment options, similar concentrations of dissolved organic compounds were observed, ranging from 99.0 ± 2.5 g/L to 115.0 ± 3.0 in the case of COD and from 33.9 ± 0.92 g/L to 38.2 ± 1.41 g/L for TOC. However, these values were more than twice as high as the values for the substrate without pretreatment. The degree of solubilisation was similar and ranged between 20 and 28% for both monitored indicators. The highest anaerobic digestion effects, ranging from 99 to 102 LCH4/kgFM, were achieved using a combined process consisting of 20 min of microwave heating, 0.10–0.20 g HCl/gTS dose, and alkaline thermohydrolysis. For the control sample, the value was only 78 LCH4/kgFM; for the other variants, it was between 79 and 94 LCH4/kgFM. The highest net energy gain of 3.51 kWh was achieved in the combined alkaline thermohydrolysis with NaOH doses between 0.10 and 0.20 g/gTS. The use of a prototype at the 5th technology readiness level made it possible to demonstrate that the strong technological effects of the thermohydrolysis process, as demonstrated in laboratory tests to date, do not allow for positive energy balance in most cases. This fact considerably limits the practical application of this type of solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Joanna Kazimierowicz; Marcin Dębowski; Marcin Zieliński;The technology of aerobic granular sludge (AGS) seems prospective in wastewater bio-treatment. The characteristics as well as compactness and structure of AGS have been proved to significantly affect the effectiveness of thus far deployed methods for sewage sludge processing, including anaerobic digestion (AD). Therefore, it is deemed necessary to extend knowledge on the possibilities of efficient AGS management and to seek viable technological solutions for methane fermentation of sludge of this type, including by means of using the pre-treatment step. Little is known about the pre-treatment method with solidified carbon dioxide (SCO2), which can be recovered in processes of biogas upgrading and enrichment, leading to biomethane production. This study aimed to determine the impact of AGS pre-treatment with SCO2 on the efficiency of its AD. An energy balance and a simplified economic analysis of the process were also carried out. It was found that an increasing dose of SCO2 applied in the pre-treatment increased the concentrations of COD, N-NH4+, and P-PO43− in the supernatant in the range of the SCO2/AGS volume ratios from 0.0 to 0.3. No statistically significant differences were noted above the latter value. The highest unit yields of biogas and methane production, reaching 476 ± 20 cm3/gVS and 341 ± 13 cm3/gVS, respectively, were obtained in the variant with the SCO2/AGS ratio of 0.3. This experimental variant also produced the highest positive net energy gain, reaching 1047.85 ± 20 kWh/ton total solids (TS). The use of the higher than 0.3 SCO2 doses was proved to significantly reduce the pH of AGS (below 6.5), thereby directly diminishing the percentage of methanogenic bacteria in the anaerobic bacterial community, which in turn contributed to a reduced CH4 fraction in the biogas.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph20054234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph20054234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Justyna Tarapata; Marcin Zieliński; Justyna Zulewska;doi: 10.3390/en15186829
This study aimed at evaluating the methane potential of two ultrafiltration (UFP) and two diafiltration (DFP) permeates generated during milk protein concentration. The permeates were characterized by a different chemical oxygen demand (COD) ranging from 7610 mg O2/L to 57,020 mg O2/L. The CH4 production efficiency was recorded for 20 days and ranged from 149 to 181 NL/kg CODadded. Moreover, the possibilities of the use of UFP/DFP to produce electricity and heat with a combined heat and power (CHP) unit was analyzed to underline the impact of the implementation of anaerobic digestion on the electric and thermal energy requirements of a dairy plant. It was concluded that the application of anaerobic digestion to UFP and DFP treatments generates the energy required to cover all the large-scale dairy plant energy demands and produce extra income. The amount of permeates generated annually in the analyzed dairy plant will enable the production of approx. 22,699 MWh of electricity and 85,516 GJ of heat. This would require a biogas plant with a 3 MW yield. Additionally, the lactose production from UFP/DFP was considered as an alternative or parallel solution for its management. The study confirmed that the biogas and lactose production from UFP/DFP enables plant owners to adjust a plant’s management towards one of these two solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Marcin Zieliński; Paulina Rusanowska; Magda Dudek; Adam Starowicz; Łukasz Barczak; Marcin Dębowski;doi: 10.3390/en17102296
Photosynthetic microbial fuel cells (pMFCs) are hybrid systems that enable simultaneous wastewater treatment under anaerobic conditions and the generation of electricity by utilizing the potential difference in the anaerobic anode chamber and the oxygenated cathode chamber. Dairy wastewater with a concentration of 2000 mg COD/L was treated in the anode of a batch pMFC. In the cathode chamber, Chlorella vulgaris or Arthrospira platensis was cultivated in synthetic medium, and next in diluted effluent from the anode chamber. The highest power density of 91 mW/m2 was generated by the pMFC with the cultivation of Arthrospira platensis. Higher values of dissolved oxygen remained during the dark phase in the cathodic medium with Arthrospira platensis cultivation than with Chlorella vulgaris. This depletion of oxygen significantly decreased voltage generation, which during the light phase increased again to the maximum values. The COD removal achieved in the anodic chamber was 87%. The efficiency of nitrogen removal in the cathode chamber during the cultivation of Arthrospira platensis and Chlorella vulgaris was about 78% and 69%, respectively. The efficiency of phosphorus removal in the cathode chamber with the cultivation of Arthrospira plantensis and Chlorella vulgaris was 58% and 43%, respectively. This study has shown that the introduction of Arthrospira platensis into the cathode chamber is more effective than that of Chlorella vulgaris.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17102296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17102296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Marcin Dębowski; Magda Dudek; Marcin Zieliński;Abstract The presented technology is aimed on the one hand at purifying the effluents from fermented sludge to the quality enabling their discharge to a river, and on the other hand at ensuring the production of high concentrations of algae biomass. The produced algae biomass will be used as a substrate in the process of methane fermentation. The main factor which minimizes the possibility of introducing crude effluents into photobioreactors is a high content of organic compounds and the suspension. The removal of these contaminants from wastewater will proceed with both physical methods via floatation and biological methods with the use of a biofilm. It is expected that biogenes will be effectively removed from effluents through the growing biomass of microalgae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Marcin Zieliński; Marcin Dębowski; Joanna Kazimierowicz; Izabela Świca;doi: 10.3390/en16031446
The increasing concentration of anthropogenic CO2 in the atmosphere is causing a global environmental crisis, forcing significant reductions in emissions. Among the existing CO2 capture technologies, microalgae-guided sequestration is seen as one of the more promising and sustainable solutions. The present review article compares CO2 emissions in the EU with other global economies, and outlines EU’s climate policy together with current and proposed EU climate regulations. Furthermore, it summarizes the current state of knowledge on controlled microalgal cultures, indicates the importance of CO2 phycoremediation methods, and assesses the importance of microalgae-based systems for long-term storage and utilization of CO2. It also outlines how far microalgae technologies within the EU have developed on the quantitative and technological levels, together with prospects for future development. The literature overview has shown that large-scale take-up of technological solutions for the production and use of microalgal biomass is hampered by economic, technological, and legal barriers. Unsuitable climate conditions are an additional impediment, forcing operators to implement technologies that maintain appropriate temperature and lighting conditions in photobioreactors, considerably driving up the associated investment and operational costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Magda Dudek; Marcin Zieliński; Mirosław Krzemieniewski; Marcin Dębowski; Anna Grala;pmid: 24191477
The objective of the present study was to determine the effectiveness of biogas production during methane fermentation of wastewaters originating from the dairy, tanning and sugar industries, by means ofrespirometric measurements conducted at a temperature of 35 degrees C. Experiments were carried out with the use of model tanks of volume 0.5 dm3. A high production yield of biogas, with methane content exceeding 60%, was achieved in the case of the anaerobic treatment of wastewaters from the dairy and sugar industries. A significantly lower effect was observed in the case of tanning wastewaters. The effectiveness of the fermentation process decreased with increasing loading of the tanks with a feedstock of organic compounds. By loading a model tank with this feedstock, the effectiveness of treatment ranged from 62.8% to 71.4% residual chemical oxygen demand for dairy wastewaters and from 57.9% to 64.1% for sugar industry wastewaters. The efficiency of organic compound removal from tanning wastewaters was below 50%, regardless of the method applied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2012.752874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2012.752874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Marcin Zieliński; Marcin Dębowski; Joanna Kazimierowicz;doi: 10.3390/pr9101772
Whey is a primary by-product of dairy plants, and one that is often difficult to manage. As whey processing units are costly and complicated, only 15–20% of whey is recycled for use in the food industry. The difficulties in managing waste whey are particularly pronounced for small, local dairy plants. One possible solution to this problem is to use advanced and efficient digesters. The aim of this study was to present an innovative multi-section hybrid anaerobic bioreactor (M-SHAR) design and to identify how microwave radiation heating (MRH) affects methane fermentation of liquid dairy waste (LDW) primarily composed of acid whey. The MRH reactor was found to perform better in terms of COD removal and biogas production compared with the convection-heated reactor. The heating method had a significant differentiating effect at higher organic load rates (OLRs). With OLRs ranging from 15 to 25 kgCOD∙m−3∙d−1, the M-SHAR with MRH ensured a 5% higher COD removal efficiency and 12–20% higher biogas yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9101772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9101772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Marcin Zieliński; Wojciech Janczukowicz; Marcin Dębowski;pmid: 17976980
Main goal of the study was present the results of some respirometric measurements of activated sludge biodegrading the substrate in the wastewater originated in selected sections of the dairy processing line. The following dairy production effluents were analyzed in the research: the pumping station wastewater (combined wastewater from all the sections of the dairy factory), the apparatus room wastewater, the butter section wastewater, the milk reception point wastewater, the cheese section wastewater and the cottage cheese section wastewater. Apart from that, sweet and sour whey, which are secondary products of hard cheese and cottage cheese production, respectively, was the subject of the research. The amount of organic matter being oxidized during a 5-day measurement session was calculated on 1g of the activated sludge biomass. The research was conducted at the temperature of 20 degrees C and 35 degrees C at the applied sludge loading rate of A'=0.2 g BOD g(-1) dry mass d(-1), which ensured complete biodegradation. The results indicated a correlation between a technological process of dairy processing, an ultimate outcome of which was the wastewater analyzed, and dairy wastewater biodegradability. The results confirmed that all dairy processing effluents can be treated together, with the exception of whey, whose complex biodegradation demands may cause too much burden to any wastewater treatment technological system and thus should be managed within a separate installation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Marcin Dębowski; Marta Kisielewska; Joanna Kazimierowicz; Marcin Zieliński;doi: 10.3390/en16010571
Production and consumption of confectionery products have increased worldwide, thus, effective management of wastewater produced is now an important issue. The confectionery high-load sewage was explored for biogas production in an innovative-design anaerobic reactor with labyrinth flow. The experimental studies were focused on determining the best technological parameters of anaerobic digestion for the effective removal of pollutants and obtaining high CH4 production efficiency. It was found that organic loading rate (OLR) of 5.0–6.0 g COD/L·d contributed to the highest CH4 generation of 94.7 ± 6.1 to 97.1 ± 5.1 L CH4/d, which corresponded to a high COD removal of 75.4 ± 1.5 to 75.0 ± 0.6%. Under such conditions the FOS/TAC ratio was below 0.4, indicating reactor stability, and pH was on the level of 7.15 ± 0.04 at OLR 5.0 g COD/L·d and 7.04 ± 0.07 at OLR 6.0 g COD/L·d.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Marcin Dębowski; Marcin Zieliński; Anna Nowicka; Joanna Kazimierowicz;doi: 10.3390/en17174207
To date, microwave radiation has been successfully used to support the chemical hydrolysis of organic substrates in the laboratory. There is a lack of studies on large-scale plants that would provide the basis for a reliable evaluation of this technology. The aim of the research was to determine the effectiveness of using microwave radiation to support the acidic and alkaline thermohydrolysis of lignocellulosic biomass prior to anaerobic digestion on a semi-industrial scale. Regardless of the pretreatment options, similar concentrations of dissolved organic compounds were observed, ranging from 99.0 ± 2.5 g/L to 115.0 ± 3.0 in the case of COD and from 33.9 ± 0.92 g/L to 38.2 ± 1.41 g/L for TOC. However, these values were more than twice as high as the values for the substrate without pretreatment. The degree of solubilisation was similar and ranged between 20 and 28% for both monitored indicators. The highest anaerobic digestion effects, ranging from 99 to 102 LCH4/kgFM, were achieved using a combined process consisting of 20 min of microwave heating, 0.10–0.20 g HCl/gTS dose, and alkaline thermohydrolysis. For the control sample, the value was only 78 LCH4/kgFM; for the other variants, it was between 79 and 94 LCH4/kgFM. The highest net energy gain of 3.51 kWh was achieved in the combined alkaline thermohydrolysis with NaOH doses between 0.10 and 0.20 g/gTS. The use of a prototype at the 5th technology readiness level made it possible to demonstrate that the strong technological effects of the thermohydrolysis process, as demonstrated in laboratory tests to date, do not allow for positive energy balance in most cases. This fact considerably limits the practical application of this type of solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Joanna Kazimierowicz; Marcin Dębowski; Marcin Zieliński;The technology of aerobic granular sludge (AGS) seems prospective in wastewater bio-treatment. The characteristics as well as compactness and structure of AGS have been proved to significantly affect the effectiveness of thus far deployed methods for sewage sludge processing, including anaerobic digestion (AD). Therefore, it is deemed necessary to extend knowledge on the possibilities of efficient AGS management and to seek viable technological solutions for methane fermentation of sludge of this type, including by means of using the pre-treatment step. Little is known about the pre-treatment method with solidified carbon dioxide (SCO2), which can be recovered in processes of biogas upgrading and enrichment, leading to biomethane production. This study aimed to determine the impact of AGS pre-treatment with SCO2 on the efficiency of its AD. An energy balance and a simplified economic analysis of the process were also carried out. It was found that an increasing dose of SCO2 applied in the pre-treatment increased the concentrations of COD, N-NH4+, and P-PO43− in the supernatant in the range of the SCO2/AGS volume ratios from 0.0 to 0.3. No statistically significant differences were noted above the latter value. The highest unit yields of biogas and methane production, reaching 476 ± 20 cm3/gVS and 341 ± 13 cm3/gVS, respectively, were obtained in the variant with the SCO2/AGS ratio of 0.3. This experimental variant also produced the highest positive net energy gain, reaching 1047.85 ± 20 kWh/ton total solids (TS). The use of the higher than 0.3 SCO2 doses was proved to significantly reduce the pH of AGS (below 6.5), thereby directly diminishing the percentage of methanogenic bacteria in the anaerobic bacterial community, which in turn contributed to a reduced CH4 fraction in the biogas.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph20054234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph20054234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Justyna Tarapata; Marcin Zieliński; Justyna Zulewska;doi: 10.3390/en15186829
This study aimed at evaluating the methane potential of two ultrafiltration (UFP) and two diafiltration (DFP) permeates generated during milk protein concentration. The permeates were characterized by a different chemical oxygen demand (COD) ranging from 7610 mg O2/L to 57,020 mg O2/L. The CH4 production efficiency was recorded for 20 days and ranged from 149 to 181 NL/kg CODadded. Moreover, the possibilities of the use of UFP/DFP to produce electricity and heat with a combined heat and power (CHP) unit was analyzed to underline the impact of the implementation of anaerobic digestion on the electric and thermal energy requirements of a dairy plant. It was concluded that the application of anaerobic digestion to UFP and DFP treatments generates the energy required to cover all the large-scale dairy plant energy demands and produce extra income. The amount of permeates generated annually in the analyzed dairy plant will enable the production of approx. 22,699 MWh of electricity and 85,516 GJ of heat. This would require a biogas plant with a 3 MW yield. Additionally, the lactose production from UFP/DFP was considered as an alternative or parallel solution for its management. The study confirmed that the biogas and lactose production from UFP/DFP enables plant owners to adjust a plant’s management towards one of these two solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Marcin Zieliński; Paulina Rusanowska; Magda Dudek; Adam Starowicz; Łukasz Barczak; Marcin Dębowski;doi: 10.3390/en17102296
Photosynthetic microbial fuel cells (pMFCs) are hybrid systems that enable simultaneous wastewater treatment under anaerobic conditions and the generation of electricity by utilizing the potential difference in the anaerobic anode chamber and the oxygenated cathode chamber. Dairy wastewater with a concentration of 2000 mg COD/L was treated in the anode of a batch pMFC. In the cathode chamber, Chlorella vulgaris or Arthrospira platensis was cultivated in synthetic medium, and next in diluted effluent from the anode chamber. The highest power density of 91 mW/m2 was generated by the pMFC with the cultivation of Arthrospira platensis. Higher values of dissolved oxygen remained during the dark phase in the cathodic medium with Arthrospira platensis cultivation than with Chlorella vulgaris. This depletion of oxygen significantly decreased voltage generation, which during the light phase increased again to the maximum values. The COD removal achieved in the anodic chamber was 87%. The efficiency of nitrogen removal in the cathode chamber during the cultivation of Arthrospira platensis and Chlorella vulgaris was about 78% and 69%, respectively. The efficiency of phosphorus removal in the cathode chamber with the cultivation of Arthrospira plantensis and Chlorella vulgaris was 58% and 43%, respectively. This study has shown that the introduction of Arthrospira platensis into the cathode chamber is more effective than that of Chlorella vulgaris.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17102296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17102296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Marcin Dębowski; Magda Dudek; Marcin Zieliński;Abstract The presented technology is aimed on the one hand at purifying the effluents from fermented sludge to the quality enabling their discharge to a river, and on the other hand at ensuring the production of high concentrations of algae biomass. The produced algae biomass will be used as a substrate in the process of methane fermentation. The main factor which minimizes the possibility of introducing crude effluents into photobioreactors is a high content of organic compounds and the suspension. The removal of these contaminants from wastewater will proceed with both physical methods via floatation and biological methods with the use of a biofilm. It is expected that biogenes will be effectively removed from effluents through the growing biomass of microalgae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Marcin Zieliński; Marcin Dębowski; Joanna Kazimierowicz; Izabela Świca;doi: 10.3390/en16031446
The increasing concentration of anthropogenic CO2 in the atmosphere is causing a global environmental crisis, forcing significant reductions in emissions. Among the existing CO2 capture technologies, microalgae-guided sequestration is seen as one of the more promising and sustainable solutions. The present review article compares CO2 emissions in the EU with other global economies, and outlines EU’s climate policy together with current and proposed EU climate regulations. Furthermore, it summarizes the current state of knowledge on controlled microalgal cultures, indicates the importance of CO2 phycoremediation methods, and assesses the importance of microalgae-based systems for long-term storage and utilization of CO2. It also outlines how far microalgae technologies within the EU have developed on the quantitative and technological levels, together with prospects for future development. The literature overview has shown that large-scale take-up of technological solutions for the production and use of microalgal biomass is hampered by economic, technological, and legal barriers. Unsuitable climate conditions are an additional impediment, forcing operators to implement technologies that maintain appropriate temperature and lighting conditions in photobioreactors, considerably driving up the associated investment and operational costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Magda Dudek; Marcin Zieliński; Mirosław Krzemieniewski; Marcin Dębowski; Anna Grala;pmid: 24191477
The objective of the present study was to determine the effectiveness of biogas production during methane fermentation of wastewaters originating from the dairy, tanning and sugar industries, by means ofrespirometric measurements conducted at a temperature of 35 degrees C. Experiments were carried out with the use of model tanks of volume 0.5 dm3. A high production yield of biogas, with methane content exceeding 60%, was achieved in the case of the anaerobic treatment of wastewaters from the dairy and sugar industries. A significantly lower effect was observed in the case of tanning wastewaters. The effectiveness of the fermentation process decreased with increasing loading of the tanks with a feedstock of organic compounds. By loading a model tank with this feedstock, the effectiveness of treatment ranged from 62.8% to 71.4% residual chemical oxygen demand for dairy wastewaters and from 57.9% to 64.1% for sugar industry wastewaters. The efficiency of organic compound removal from tanning wastewaters was below 50%, regardless of the method applied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2012.752874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2012.752874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Marcin Zieliński; Marcin Dębowski; Joanna Kazimierowicz;doi: 10.3390/pr9101772
Whey is a primary by-product of dairy plants, and one that is often difficult to manage. As whey processing units are costly and complicated, only 15–20% of whey is recycled for use in the food industry. The difficulties in managing waste whey are particularly pronounced for small, local dairy plants. One possible solution to this problem is to use advanced and efficient digesters. The aim of this study was to present an innovative multi-section hybrid anaerobic bioreactor (M-SHAR) design and to identify how microwave radiation heating (MRH) affects methane fermentation of liquid dairy waste (LDW) primarily composed of acid whey. The MRH reactor was found to perform better in terms of COD removal and biogas production compared with the convection-heated reactor. The heating method had a significant differentiating effect at higher organic load rates (OLRs). With OLRs ranging from 15 to 25 kgCOD∙m−3∙d−1, the M-SHAR with MRH ensured a 5% higher COD removal efficiency and 12–20% higher biogas yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9101772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9101772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu