Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
19 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • basic medicine

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Psilos, Kelly E.; Hodge, Clyde W.; Hodge, Christopher J.; Faccidomo, Sara P.; +2 Authors

    Cue-induced reinstatement of alcohol-seeking is a hallmark behavioral pathology of addiction. Evidence suggests that reinstatement (e.g., relapse), may be regulated by cell signaling systems that underlie neuroplasticity. A variety of plasticity events require activation of calcium calmodulin-dependent protein kinase II (CaMKII) in components of the reward pathway, such as the nucleus accumbens and amygdala. We sought to determine if cue-induced reinstatement of alcohol-seeking behavior is associated with changes in the activation state (e.g., phosphorylation) of CaMKII-T286. Male C57BL/6J mice (n = 14) were trained to lever press on a fixed-ratio-4 schedule of sweetened alcohol (2% sucrose + 9% EtOH) reinforcement. After 14-d of extinction (no cues or reinforcers), mice underwent a response-contingent reinstatement (n = 7) vs. an additional day of extinction (n = 7). Brains were removed immediately after the test and processed for evaluation of pCaMKII-T286 immunoreactivity (IR). Number of pCaMKII-T286 positive cells/mm2 was quantified from coronal brain sections using Bioquant Image Analysis software. Mice emitted significantly more responses on the alcohol vs. the inactive lever throughout the baseline phase with average alcohol intake of 1.1 ± 0.03 g/kg/1-h. During extinction, responses on the alcohol lever decreased to inactive lever levels by day 7. Significant cue-induced reinstatement of alcohol-seeking was observed during a single test with no effects on the inactive lever. Reinstatement was associated with increased pCaMKII-T286 IR specifically in amygdala (LA and BLA), nucleus accumbens (AcbSh), lateral septum, mediodorsal thalamus, and piriform cortex as compared to extinction control. Brain regions showing no change included the dorsal striatum, medial septum, cingulate cortex, habenula, paraventricular thalamus, and ventral hypothalamus. These results show response contingent cue-induced reinstatement of alcohol-seeking behavior is associated with selective increases in pCaMKII-T286 in specific reward- and memory-related brain regions of male C57BL/6J mice. Primary molecular mechanisms of associative learning and memory may regulate relapse in alcohol addiction.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmacology Biochem...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmacology Biochemistry and Behavior
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2017
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmacology Biochem...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Pharmacology Biochemistry and Behavior
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2017
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: P. Crystal Stanford; Joyce Besheer; Sara Faccidomo; Clyde W. Hodge;

    Extracellular signal-regulated protein kinase (ERK1/2) is a member of the mitogen-activated protein kinase (MAPK) signaling pathway and a key molecular target for ethanol (EtOH) and other drugs of abuse.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Psychopharmacologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Psychopharmacology
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Psychopharmacology
    Article . 2009 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2009
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    59
    citations59
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Psychopharmacologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Psychopharmacology
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Psychopharmacology
      Article . 2009 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2009
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Michael C. Salling; Sara P. Faccidomo; Chia Li; Kelly Psilos; +5 Authors

    Despite worldwide consumption of moderate amounts of alcohol, the neural mechanisms that mediate the transition from use to abuse are not fully understood.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological Psychiatr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biological Psychiatry
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    72
    citations72
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological Psychiatr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biological Psychiatry
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gerald A. Tolliver; Miki Haraguchi; Clyde W. Hodge; Herman H. Samson;

    Rats initiated to self-administer 10% ethanol (v/v) in an operant situation using the sucrose-substitution technique received bilateral n. accumbens or caudate nucleus microinjections of d-amphetamine (4, 10, and 20 micrograms/brain), quinpirole (4 micrograms/brain), and/or raclopride (0.1, 0.5, and 1.0 micrograms/brain). Only microinjections into the n. accumbens produced changes in rate and pattern of responding. With d-amphetamine, an increase in total responding and a slowing of initial response rate was seen, whereas with raclopride administration a dose-related decrease in total responding was observed with no alteration in momentary response rates. Drug-dependent behavioral rate and pattern differences suggest that DA activity in the n. accumbens influences ethanol reinforced behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Research Bulle...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Brain Research Bulletin
    Article . 1993 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    167
    citations167
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Research Bulle...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Brain Research Bulletin
      Article . 1993 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Michael F. Miles; Sajida Rahman; Christelle Thibault; Christelle Thibault; +7 Authors

    Adaptive changes in gene expression are thought to contribute to dependence, addiction and other behavioral responses to chronic ethanol abuse. DNA array studies provide a nonbiased detection of networks of gene expression changes, allowing insight into functional consequences and mechanisms of such molecular responses. We used oligonucleotide arrays to study nearly 6000 genes in human SH-SY5Y neuroblastoma cells exposed to chronic ethanol. A set of 42 genes had consistently increased or decreased mRNA abundance after 3 days of ethanol treatment. Groups of genes related to norepinephrine production, glutathione metabolism, and protection against apoptosis were identified. Genes involved in catecholamine metabolism are of special interest because of the role of this pathway in mediating ethanol withdrawal symptoms (physical dependence). Ethanol treatment elevated dopamine beta-hydroxylase (DBH, EC 1.14.17.1) mRNA and protein levels and increased releasable norepinephrine in SH-SY5Y cultures. Acute ethanol also increased DBH mRNA levels in mouse adrenal gland, suggesting in vivo functional consequences for ethanol regulation of DBH. In SH-SY5Y cells, ethanol also decreased mRNA and secreted protein levels for monocyte chemotactic protein 1, an effect that could contribute to the protective role of moderate ethanol consumption in atherosclerotic vascular disease. Finally, we identified a subset of genes similarly regulated by both ethanol and dibutyryl-cAMP treatment in SH-SY5Y cells. This suggests that ethanol and cAMP signaling share mechanistic features in regulating a subset of ethanol-responsive genes. Our findings offer new insights regarding possible molecular mechanisms underlying behavioral responses or medical consequences of ethanol consumption and alcoholism.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    114
    citations114
    popularityAverage
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Clyde W. Hodge; Greg A. Gerhardt; Eric A. Floyd; Peter W. Kalivas; +3 Authors

    The actions of ethanol on extracellular dopamine levels in the n. accumbens were examined in both anesthetized and unanesthetized rats using either in vivo voltammetry or microdialysis. In the voltammetry studies, ethanol was microinjected directly into the accumbens. For the microdialysis studies, the ethanol was injected systemically. The voltammetry studies failed to find any direct effect of local ethanol on extracellular dopamine levels. However, exposure to high ethanol concentrations directly injected into the n. accumbens showed the rise rate and the return to baseline rate to a n. accumbens KCl-stimulated dopamine release. In the microdialysis studies, increased levels of extracellular dopamine in the n. accumbens were found in unanesthetized rats, similar to those reported in the literature. However, in the anesthetized rats, the extracellular dopamine levels were not increased, even with similar local ethanol levels measured in the dialysate. Taken together, the data suggest that the actions of ethanol to increase extracellular dopamine levels in the n. accumbens are most likely not an effect of ethanol at the level of the accumbens but rather an action which increases neural activity within the mesoaccumbens pathway, perhaps via actions at the ventral tegmental area.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 1997 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 1997
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    25
    citations25
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 1997 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 1997
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The discriminative stimulus properties of ethanol are mediated in part by positive modulation of GABAA receptors. Recent evidence indicates that metabotropic glutamate receptor subtype 5 (mGluR5) activity can influence GABAA receptor function. Therefore, the purpose of this work was to examine the potential involvement of mGluR5 in the discriminative stimulus effects of ethanol. In rats trained to discriminate ethanol (1 g/kg, intragastric gavage (i.g.)) from water, 2-methyl-6-(phenylethyl)-pyridine (MPEP) (1–50 mg/kg, i.p.) a selective noncompetitive antagonist of the mGlu5 receptor did not produce ethanol-like stimulus properties. However, pretreatment with MPEP (30 mg/kg) reduced the stimulus properties of ethanol as indicated by significant reductions in ethanol-appropriate responding, specifically at 0.5 and 1 g/kg ethanol, and a failure of ethanol test doses (1 and 2 g/kg) to fully substitute for the ethanol training dose. To test whether mGluR5 antagonism altered the GABAA receptor component of the ethanol stimulus, the ability of MPEP to modulate pentobarbital and diazepam substitution for ethanol was assessed. Pentobarbital substitution (1–10 mg/kg, i.p.) for ethanol was not altered by MPEP pretreatment. However, MPEP pretreatment inhibited the ethanol-like stimulus properties of diazepam (5 mg/kg, i.p.). To examine a potential anatomical basis for these pharmacological findings, expression patterns of mGluR5- and benzodiazepine-sensitive GABAA α1-containing receptors were examined by dual-label fluorescent immunohistochemistry with visualization by confocal microscopy. Results indicated that mGluR5- and GABAA α1-containing receptors were both coexpressed in limbic brain regions and colocalized on the same cells in specific brain regions including the amygdala, hippocampus, globus pallidus, and ventral pallidum. Together, these findings suggest an interaction between mGluR5- and benzodiazepine-sensitive GABAA receptors in mediating ethanol discrimination.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuropsychopharmacology
    Article . 2004 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2005
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuropsychopharmacology
      Article . 2004 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2005
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kristin K. Mehmert; Ashley Haywood; M. Foster Olive; Stephen P. Kelley; +5 Authors

    Several of the actions of ethanol are mediated by gamma-aminobutyrate type A (GABA(A)) receptors. Here we demonstrated that mutant mice lacking protein kinase C epsilon (PKCepsilon) were more sensitive than wild-type littermates to the acute behavioral effects of ethanol and other drugs that allosterically activate GABA(A) receptors. GABA(A) receptors in membranes isolated from the frontal cortex of PKCepsilon null mice were also supersensitive to allosteric activation by ethanol and flunitrazepam. In addition, these mutant mice showed markedly reduced ethanol self-administration. These findings indicate that inhibition of PKCepsilon increases sensitivity of GABA(A) receptors to ethanol and allosteric modulators. Pharmacological agents that inhibit PKCepsilon may be useful for treatment of alcoholism and may provide a non-sedating alternative for enhancing GABA(A) receptor function to treat other disorders such as anxiety and epilepsy.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CORE
    Article
    Data sources: CORE
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Neuroscience
    Article . 1999 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    310
    citations310
    popularityTop 10%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CORE
      Article
      Data sources: CORE
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Neuroscience
      Article . 1999 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sara Faccidomo; Jessica L. Hoffman; Clyde W. Hodge; Rebekah A. Stevenson; +1 Authors

    Metabotropic glutamate receptor subtype-5 (mGluR5) activity regulates a variety of behavioral pathologies associated with alcohol addiction. The main goal of this study was to determine if mGluR5 regulates the induction of ethanol-induced locomotor sensitization, which is a model of experience-dependent plasticity following initial exposure to drugs of abuse. The extracellular signal-regulated kinase (ERK1/2) pathway is downstream of mGluR5 and implicated in alcohol addiction; however, its role in sensitization remains unexplored. We sought to determine if mGluR5-mediated changes in ethanol-induced sensitization are associated with changes in ERK1/2 phosphorylation (pERK1/2) in specific brain regions. Adult male DBA/2 J mice were tested for acute locomotor response to ethanol (0 or 2 g/kg, IP) followed by a 9-day induction period in which the mGluR5 antagonist MPEP (0 or 30 mg/kg, IP) was administered prior to ethanol (0 or 2.5 g/kg, IP). One day later, ethanol (2 g/kg) produced a robust within- and between-group increase in locomotor activity, indicating sensitization in mice that received MPEP (0 mg/kg) during induction. MPEP (30 mg/kg) treatment during induction resulted in locomotor response to ethanol (2 g/kg) challenge that was equivalent to an acute response, indicating full blockade of sensitization. Sensitization was associated with increased pERK1/2 immunoreactivity (IR) in nucleus accumbens shell (AcbSh) and a reduction in lateral habenula (LHb), both of which were blocked by MPEP treatment during induction. Sensitization was also associated with mGluR5-independent increases in pERK1/2 IR in the nucleus accumbens core and decreases in the dentate gyrus and lateral septum. These data indicate that mGluR5 activity is required for the induction of ethanol locomotor sensitization and associated changes in ERK1/2 phosphorylation in the AcbSh and LHb, which raises the hypothesis that mGluR5-mediated cell signaling in these brain regions may mediate the induction of sensitization. Elucidating mechanisms of sensitization may increase understanding of how ethanol hijacks behavioral functions during the development of addiction.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioural Brain Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Behavioural Brain Research
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioural Brain Re...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Behavioural Brain Research
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Clyde W. Hodge; Roderic S. Lewis; Herman H. Samson; Heidi L. Erickson;

    The serotonin 5-HT3 antagonist ICS 205-930 has been shown to block the discriminative stimulus properties of ethanol and decrease voluntary intake, suggesting a possible role for 5-HT3 systems in the reinforcing effects of ethanol. ICS 205-930 (0.56, 1.0, 3.0, 10.0, and 17.0 mg/kg i.p.) was examined on ethanol and water self-administration in an operant paradigm. Following a sucrose-fading procedure, two groups of nondeprived rats responded on either a concurrent fixed ratio 4 schedule for ethanol (10% v/v) and water (CONC FR4 FR4), or a single FR4 schedule for ethanol (10% v/v). ICS 205-930 dose-dependently decreased ethanol-reinforced responding in the concurrent condition without decreasing water-reinforced responding, suggesting a specific effect on ethanol. Ethanol-reinforced responding was also dose-dependently decreased in the single FR4 condition, but the dose effect curve was shifted to the left. These data support the conclusions that 5-HT3 systems may play a specific role in ethanol self-administration that is independent of general appetitive and motor processes, and that 5-HT3 antagonists may have therapeutic efficacy in the treatment of alcohol abuse when multiple reinforcers are available.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 1993 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 1993
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    92
    citations92
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 1993 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 1993
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
19 Research products (1 rule applied)
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Psilos, Kelly E.; Hodge, Clyde W.; Hodge, Christopher J.; Faccidomo, Sara P.; +2 Authors

    Cue-induced reinstatement of alcohol-seeking is a hallmark behavioral pathology of addiction. Evidence suggests that reinstatement (e.g., relapse), may be regulated by cell signaling systems that underlie neuroplasticity. A variety of plasticity events require activation of calcium calmodulin-dependent protein kinase II (CaMKII) in components of the reward pathway, such as the nucleus accumbens and amygdala. We sought to determine if cue-induced reinstatement of alcohol-seeking behavior is associated with changes in the activation state (e.g., phosphorylation) of CaMKII-T286. Male C57BL/6J mice (n = 14) were trained to lever press on a fixed-ratio-4 schedule of sweetened alcohol (2% sucrose + 9% EtOH) reinforcement. After 14-d of extinction (no cues or reinforcers), mice underwent a response-contingent reinstatement (n = 7) vs. an additional day of extinction (n = 7). Brains were removed immediately after the test and processed for evaluation of pCaMKII-T286 immunoreactivity (IR). Number of pCaMKII-T286 positive cells/mm2 was quantified from coronal brain sections using Bioquant Image Analysis software. Mice emitted significantly more responses on the alcohol vs. the inactive lever throughout the baseline phase with average alcohol intake of 1.1 ± 0.03 g/kg/1-h. During extinction, responses on the alcohol lever decreased to inactive lever levels by day 7. Significant cue-induced reinstatement of alcohol-seeking was observed during a single test with no effects on the inactive lever. Reinstatement was associated with increased pCaMKII-T286 IR specifically in amygdala (LA and BLA), nucleus accumbens (AcbSh), lateral septum, mediodorsal thalamus, and piriform cortex as compared to extinction control. Brain regions showing no change included the dorsal striatum, medial septum, cingulate cortex, habenula, paraventricular thalamus, and ventral hypothalamus. These results show response contingent cue-induced reinstatement of alcohol-seeking behavior is associated with selective increases in pCaMKII-T286 in specific reward- and memory-related brain regions of male C57BL/6J mice. Primary molecular mechanisms of associative learning and memory may regulate relapse in alcohol addiction.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmacology Biochem...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmacology Biochemistry and Behavior
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2017
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmacology Biochem...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Pharmacology Biochemistry and Behavior
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2017
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: P. Crystal Stanford; Joyce Besheer; Sara Faccidomo; Clyde W. Hodge;

    Extracellular signal-regulated protein kinase (ERK1/2) is a member of the mitogen-activated protein kinase (MAPK) signaling pathway and a key molecular target for ethanol (EtOH) and other drugs of abuse.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Psychopharmacologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Psychopharmacology
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Psychopharmacology
    Article . 2009 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2009
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    59
    citations59
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Psychopharmacologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Psychopharmacology
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Psychopharmacology
      Article . 2009 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2009
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Michael C. Salling; Sara P. Faccidomo; Chia Li; Kelly Psilos; +5 Authors

    Despite worldwide consumption of moderate amounts of alcohol, the neural mechanisms that mediate the transition from use to abuse are not fully understood.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological Psychiatr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biological Psychiatry
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    72
    citations72
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological Psychiatr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biological Psychiatry
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gerald A. Tolliver; Miki Haraguchi; Clyde W. Hodge; Herman H. Samson;

    Rats initiated to self-administer 10% ethanol (v/v) in an operant situation using the sucrose-substitution technique received bilateral n. accumbens or caudate nucleus microinjections of d-amphetamine (4, 10, and 20 micrograms/brain), quinpirole (4 micrograms/brain), and/or raclopride (0.1, 0.5, and 1.0 micrograms/brain). Only microinjections into the n. accumbens produced changes in rate and pattern of responding. With d-amphetamine, an increase in total responding and a slowing of initial response rate was seen, whereas with raclopride administration a dose-related decrease in total responding was observed with no alteration in momentary response rates. Drug-dependent behavioral rate and pattern differences suggest that DA activity in the n. accumbens influences ethanol reinforced behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Research Bulle...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Brain Research Bulletin
    Article . 1993 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    167
    citations167
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Research Bulle...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Brain Research Bulletin
      Article . 1993 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Michael F. Miles; Sajida Rahman; Christelle Thibault; Christelle Thibault; +7 Authors

    Adaptive changes in gene expression are thought to contribute to dependence, addiction and other behavioral responses to chronic ethanol abuse. DNA array studies provide a nonbiased detection of networks of gene expression changes, allowing insight into functional consequences and mechanisms of such molecular responses. We used oligonucleotide arrays to study nearly 6000 genes in human SH-SY5Y neuroblastoma cells exposed to chronic ethanol. A set of 42 genes had consistently increased or decreased mRNA abundance after 3 days of ethanol treatment. Groups of genes related to norepinephrine production, glutathione metabolism, and protection against apoptosis were identified. Genes involved in catecholamine metabolism are of special interest because of the role of this pathway in mediating ethanol withdrawal symptoms (physical dependence). Ethanol treatment elevated dopamine beta-hydroxylase (DBH, EC 1.14.17.1) mRNA and protein levels and increased releasable norepinephrine in SH-SY5Y cultures. Acute ethanol also increased DBH mRNA levels in mouse adrenal gland, suggesting in vivo functional consequences for ethanol regulation of DBH. In SH-SY5Y cells, ethanol also decreased mRNA and secreted protein levels for monocyte chemotactic protein 1, an effect that could contribute to the protective role of moderate ethanol consumption in atherosclerotic vascular disease. Finally, we identified a subset of genes similarly regulated by both ethanol and dibutyryl-cAMP treatment in SH-SY5Y cells. This suggests that ethanol and cAMP signaling share mechanistic features in regulating a subset of ethanol-responsive genes. Our findings offer new insights regarding possible molecular mechanisms underlying behavioral responses or medical consequences of ethanol consumption and alcoholism.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    114
    citations114
    popularityAverage
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Clyde W. Hodge; Greg A. Gerhardt; Eric A. Floyd; Peter W. Kalivas; +3 Authors

    The actions of ethanol on extracellular dopamine levels in the n. accumbens were examined in both anesthetized and unanesthetized rats using either in vivo voltammetry or microdialysis. In the voltammetry studies, ethanol was microinjected directly into the accumbens. For the microdialysis studies, the ethanol was injected systemically. The voltammetry studies failed to find any direct effect of local ethanol on extracellular dopamine levels. However, exposure to high ethanol concentrations directly injected into the n. accumbens showed the rise rate and the return to baseline rate to a n. accumbens KCl-stimulated dopamine release. In the microdialysis studies, increased levels of extracellular dopamine in the n. accumbens were found in unanesthetized rats, similar to those reported in the literature. However, in the anesthetized rats, the extracellular dopamine levels were not increased, even with similar local ethanol levels measured in the dialysate. Taken together, the data suggest that the actions of ethanol to increase extracellular dopamine levels in the n. accumbens are most likely not an effect of ethanol at the level of the accumbens but rather an action which increases neural activity within the mesoaccumbens pathway, perhaps via actions at the ventral tegmental area.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 1997 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 1997
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    25
    citations25
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 1997 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 1997
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The discriminative stimulus properties of ethanol are mediated in part by positive modulation of GABAA receptors. Recent evidence indicates that metabotropic glutamate receptor subtype 5 (mGluR5) activity can influence GABAA receptor function. Therefore, the purpose of this work was to examine the potential involvement of mGluR5 in the discriminative stimulus effects of ethanol. In rats trained to discriminate ethanol (1 g/kg, intragastric gavage (i.g.)) from water, 2-methyl-6-(phenylethyl)-pyridine (MPEP) (1–50 mg/kg, i.p.) a selective noncompetitive antagonist of the mGlu5 receptor did not produce ethanol-like stimulus properties. However, pretreatment with MPEP (30 mg/kg) reduced the stimulus properties of ethanol as indicated by significant reductions in ethanol-appropriate responding, specifically at 0.5 and 1 g/kg ethanol, and a failure of ethanol test doses (1 and 2 g/kg) to fully substitute for the ethanol training dose. To test whether mGluR5 antagonism altered the GABAA receptor component of the ethanol stimulus, the ability of MPEP to modulate pentobarbital and diazepam substitution for ethanol was assessed. Pentobarbital substitution (1–10 mg/kg, i.p.) for ethanol was not altered by MPEP pretreatment. However, MPEP pretreatment inhibited the ethanol-like stimulus properties of diazepam (5 mg/kg, i.p.). To examine a potential anatomical basis for these pharmacological findings, expression patterns of mGluR5- and benzodiazepine-sensitive GABAA α1-containing receptors were examined by dual-label fluorescent immunohistochemistry with visualization by confocal microscopy. Results indicated that mGluR5- and GABAA α1-containing receptors were both coexpressed in limbic brain regions and colocalized on the same cells in specific brain regions including the amygdala, hippocampus, globus pallidus, and ventral pallidum. Together, these findings suggest an interaction between mGluR5- and benzodiazepine-sensitive GABAA receptors in mediating ethanol discrimination.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuropsychopharmacology
    Article . 2004 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    UNC Dataverse
    Article . 2005
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuropsychopharmacology
      Article . 2004 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      UNC Dataverse
      Article . 2005
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kristin K. Mehmert; Ashley Haywood; M. Foster Olive; Stephen P. Kelley; +5 Authors

    Several of the actions of ethanol are mediated by gamma-aminobutyrate type A (GABA(A)) receptors. Here we demonstrated that mutant mice lacking protein kinase C epsilon (PKCepsilon) were more sensitive than wild-type littermates to the acute behavioral effects of ethanol and other drugs that allosterically activate GABA(A) receptors. GABA(A) receptors in membranes isolated from the frontal cortex of PKCepsilon null mice were also supersensitive to allosteric activation by ethanol and flunitrazepam. In addition, these mutant mice showed markedly reduced ethanol self-administration. These findings indicate that inhibition of PKCepsilon increases sensitivity of GABA(A) receptors to ethanol and allosteric modulators. Pharmacological agents that inhibit PKCepsilon may be useful for treatment of alcoholism and may provide a non-sedating alternative for enhancing GABA(A) receptor function to treat other disorders such as anxiety and epilepsy.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CORE
    Article
    Data sources: CORE
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Neuroscience
    Article . 1999 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    310
    citations310
    popularityTop 10%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CORE
      Article
      Data sources: CORE
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Neuroscience
      Article . 1999 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sara Faccidomo; Jessica L. Hoffman; Clyde W. Hodge; Rebekah A. Stevenson; +1 Authors

    Metabotropic glutamate receptor subtype-5 (mGluR5) activity regulates a variety of behavioral pathologies associated with alcohol addiction. The main goal of this study was to determine if mGluR5 regulates the induction of ethanol-induced locomotor sensitization, which is a model of experience-dependent plasticity following initial exposure to drugs of abuse. The extracellular signal-regulated kinase (ERK1/2) pathway is downstream of mGluR5 and implicated in alcohol addiction; however, its role in sensitization remains unexplored. We sought to determine if mGluR5-mediated changes in ethanol-induced sensitization are associated with changes in ERK1/2 phosphorylation (pERK1/2) in specific brain regions. Adult male DBA/2 J mice were tested for acute locomotor response to ethanol (0 or 2 g/kg, IP) followed by a 9-day induction period in which the mGluR5 antagonist MPEP (0 or 30 mg/kg, IP) was administered prior to ethanol (0 or 2.5 g/kg, IP). One day later, ethanol (2 g/kg) produced a robust within- and between-group increase in locomotor activity, indicating sensitization in mice that received MPEP (0 mg/kg) during induction. MPEP (30 mg/kg) treatment during induction resulted in locomotor response to ethanol (2 g/kg) challenge that was equivalent to an acute response, indicating full blockade of sensitization. Sensitization was associated with increased pERK1/2 immunoreactivity (IR) in nucleus accumbens shell (AcbSh) and a reduction in lateral habenula (LHb), both of which were blocked by MPEP treatment during induction. Sensitization was also associated with mGluR5-independent increases in pERK1/2 IR in the nucleus accumbens core and decreases in the dentate gyrus and lateral septum. These data indicate that mGluR5 activity is required for the induction of ethanol locomotor sensitization and associated changes in ERK1/2 phosphorylation in the AcbSh and LHb, which raises the hypothesis that mGluR5-mediated cell signaling in these brain regions may mediate the induction of sensitization. Elucidating mechanisms of sensitization may increase understanding of how ethanol hijacks behavioral functions during the development of addiction.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioural Brain Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Behavioural Brain Research
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioural Brain Re...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Behavioural Brain Research
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Clyde W. Hodge; Roderic S. Lewis; Herman H. Samson; Heidi L. Erickson;

    The serotonin 5-HT3 antagonist ICS 205-930 has been shown to block the discriminative stimulus properties of ethanol and decrease voluntary intake, suggesting a possible role for 5-HT3 systems in the reinforcing effects of ethanol. ICS 205-930 (0.56, 1.0, 3.0, 10.0, and 17.0 mg/kg i.p.) was examined on ethanol and water self-administration in an operant paradigm. Following a sucrose-fading procedure, two groups of nondeprived rats responded on either a concurrent fixed ratio 4 schedule for ethanol (10% v/v) and water (CONC FR4 FR4), or a single FR4 schedule for ethanol (10% v/v). ICS 205-930 dose-dependently decreased ethanol-reinforced responding in the concurrent condition without decreasing water-reinforced responding, suggesting a specific effect on ethanol. Ethanol-reinforced responding was also dose-dependently decreased in the single FR4 condition, but the dose effect curve was shifted to the left. These data support the conclusions that 5-HT3 systems may play a specific role in ethanol self-administration that is independent of general appetitive and motor processes, and that 5-HT3 antagonists may have therapeutic efficacy in the treatment of alcohol abuse when multiple reinforcers are available.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 1993 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 1993
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    92
    citations92
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 1993 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 1993
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph