- home
- Advanced Search
- Energy Research
- health sciences
- Energy Research
- health sciences
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PSergey A. Zimov; Dan Zhu; Jinfeng Chang; Jinfeng Chang; Josep Peñuelas; Philippe Ciais; Shushi Peng; Gerhard Krinner; Nicolas Viovy;Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PSergey A. Zimov; Dan Zhu; Jinfeng Chang; Jinfeng Chang; Josep Peñuelas; Philippe Ciais; Shushi Peng; Gerhard Krinner; Nicolas Viovy;Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Elsevier BV Wang, Rong; Bai, Zhaohai; Chang, Jinfeng; Li, Qiushuang; Hristov, Alexander N.; Smith, Pete; Yin, Yulong; Tan, Zhiliang; Wang, Min;Animal-derived food production accounts for one-third of global anthropogenic greenhouse gas (GHG) emissions. Diet followed in China is ranked as low-carbon emitting (i.e., 0.21 t CO2-eq per capita in 2018, ranking at 145th of 168 countries) due to the low average animal-derived food consumption rate, and preferential consumption of animal-derived foods with lower GHG emissions (i.e., pork and eggs versus beef and milk). However, the projected increase in GHG emissions from livestock production poses great challenges for achieving China's "carbon neutrality" pledge. We propose that the livestock sector in China may achieve "climate neutrality" with net-zero warming around 2050 by implementing healthy diet and mitigation strategies to control enteric methane emissions.
The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Elsevier BV Wang, Rong; Bai, Zhaohai; Chang, Jinfeng; Li, Qiushuang; Hristov, Alexander N.; Smith, Pete; Yin, Yulong; Tan, Zhiliang; Wang, Min;Animal-derived food production accounts for one-third of global anthropogenic greenhouse gas (GHG) emissions. Diet followed in China is ranked as low-carbon emitting (i.e., 0.21 t CO2-eq per capita in 2018, ranking at 145th of 168 countries) due to the low average animal-derived food consumption rate, and preferential consumption of animal-derived foods with lower GHG emissions (i.e., pork and eggs versus beef and milk). However, the projected increase in GHG emissions from livestock production poses great challenges for achieving China's "carbon neutrality" pledge. We propose that the livestock sector in China may achieve "climate neutrality" with net-zero warming around 2050 by implementing healthy diet and mitigation strategies to control enteric methane emissions.
The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Xiaowei Guo; Xiali Mao; Wu Yu; Liujun Xiao; Mingming Wang; Shuai Zhang; Jinyang Zheng; Hangxin Zhou; Lun Luo; Jinfeng Chang; Zhou Shi; Zhongkui Luo;doi: 10.1111/gcb.16505
pmid: 36300560
AbstractSoil biogeochemical processes may present depth‐dependent responses to climate change, due to vertical environmental gradients (e.g., thermal and moisture regimes, and the quantity and quality of soil organic matter) along soil profile. However, it is a grand challenge to distinguish such depth dependence under field conditions. Here we present an innovative, cost‐effective and simple approach of field incubation of intact soil cores to explore such depth dependence. The approach adopts field incubation of two sets of intact soil cores: one incubated right‐side up (i.e., non‐inverted), and another upside down (i.e., inverted). This inversion keeps soil intact but changes the depth of the soil layer of same depth origin. Combining reciprocal translocation experiments to generate natural climate shift, we applied this incubation approach along a 2200 m elevational mountainous transect in southeast Tibetan Plateau. We measured soil respiration (Rs) from non‐inverted and inverted cores of 1 m deep, respectively, which were exchanged among and incubated at different elevations. The results indicated that Rs responds significantly (p < .05) to translocation‐induced climate shifts, but this response is depth‐independent. As the incubation proceeds, Rs from both non‐inverted and inverted cores become more sensitive to climate shifts, indicating higher vulnerability of persistent soil organic matter (SOM) to climate change than labile components, if labile substrates are assumed to be depleted with the proceeding of incubation. These results show in situ evidence that whole‐profile SOM mineralization is sensitive to climate change regardless of the depth location. Together with measurements of vertical physiochemical conditions, the inversion experiment can serve as an experimental platform to elucidate the depth dependence of the response of soil biogeochemical processes to climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Xiaowei Guo; Xiali Mao; Wu Yu; Liujun Xiao; Mingming Wang; Shuai Zhang; Jinyang Zheng; Hangxin Zhou; Lun Luo; Jinfeng Chang; Zhou Shi; Zhongkui Luo;doi: 10.1111/gcb.16505
pmid: 36300560
AbstractSoil biogeochemical processes may present depth‐dependent responses to climate change, due to vertical environmental gradients (e.g., thermal and moisture regimes, and the quantity and quality of soil organic matter) along soil profile. However, it is a grand challenge to distinguish such depth dependence under field conditions. Here we present an innovative, cost‐effective and simple approach of field incubation of intact soil cores to explore such depth dependence. The approach adopts field incubation of two sets of intact soil cores: one incubated right‐side up (i.e., non‐inverted), and another upside down (i.e., inverted). This inversion keeps soil intact but changes the depth of the soil layer of same depth origin. Combining reciprocal translocation experiments to generate natural climate shift, we applied this incubation approach along a 2200 m elevational mountainous transect in southeast Tibetan Plateau. We measured soil respiration (Rs) from non‐inverted and inverted cores of 1 m deep, respectively, which were exchanged among and incubated at different elevations. The results indicated that Rs responds significantly (p < .05) to translocation‐induced climate shifts, but this response is depth‐independent. As the incubation proceeds, Rs from both non‐inverted and inverted cores become more sensitive to climate shifts, indicating higher vulnerability of persistent soil organic matter (SOM) to climate change than labile components, if labile substrates are assumed to be depleted with the proceeding of incubation. These results show in situ evidence that whole‐profile SOM mineralization is sensitive to climate change regardless of the depth location. Together with measurements of vertical physiochemical conditions, the inversion experiment can serve as an experimental platform to elucidate the depth dependence of the response of soil biogeochemical processes to climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Jingmeng; Li, Wei; Ciais, Philippe; Li, Laurent; Chang, Jinfeng; Goll, Daniel; Gasser, Thomas; Huang, Xiaomeng; Devaraju, Narayanappa; Boucher, Olivier;AbstractBioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.
IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Jingmeng; Li, Wei; Ciais, Philippe; Li, Laurent; Chang, Jinfeng; Goll, Daniel; Gasser, Thomas; Huang, Xiaomeng; Devaraju, Narayanappa; Boucher, Olivier;AbstractBioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.
IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Science China Press., Co. Ltd. Yuanhe, Yang; Yue, Shi; Wenjuan, Sun; Jinfeng, Chang; Jianxiao, Zhu; Leiyi, Chen; Xin, Wang; Yanpei, Guo; Hongtu, Zhang; Lingfei, Yu; Shuqing, Zhao; Kang, Xu; Jiangling, Zhu; Haihua, Shen; Yuanyuan, Wang; Yunfeng, Peng; Xia, Zhao; Xiangping, Wang; Huifeng, Hu; Shiping, Chen; Mei, Huang; Xuefa, Wen; Shaopeng, Wang; Biao, Zhu; Shuli, Niu; Zhiyao, Tang; Lingli, Liu; Jingyun, Fang;pmid: 35146581
Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (-0.2±0.9) Pg C yr-1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr-1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20-0.25 Pg C yr-1 in China during the past decades, and predict it to be 0.15-0.52 Pg C yr-1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.
Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 280 citations 280 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Science China Press., Co. Ltd. Yuanhe, Yang; Yue, Shi; Wenjuan, Sun; Jinfeng, Chang; Jianxiao, Zhu; Leiyi, Chen; Xin, Wang; Yanpei, Guo; Hongtu, Zhang; Lingfei, Yu; Shuqing, Zhao; Kang, Xu; Jiangling, Zhu; Haihua, Shen; Yuanyuan, Wang; Yunfeng, Peng; Xia, Zhao; Xiangping, Wang; Huifeng, Hu; Shiping, Chen; Mei, Huang; Xuefa, Wen; Shaopeng, Wang; Biao, Zhu; Shuli, Niu; Zhiyao, Tang; Lingli, Liu; Jingyun, Fang;pmid: 35146581
Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (-0.2±0.9) Pg C yr-1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr-1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20-0.25 Pg C yr-1 in China during the past decades, and predict it to be 0.15-0.52 Pg C yr-1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.
Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 280 citations 280 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PSergey A. Zimov; Dan Zhu; Jinfeng Chang; Jinfeng Chang; Josep Peñuelas; Philippe Ciais; Shushi Peng; Gerhard Krinner; Nicolas Viovy;Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PSergey A. Zimov; Dan Zhu; Jinfeng Chang; Jinfeng Chang; Josep Peñuelas; Philippe Ciais; Shushi Peng; Gerhard Krinner; Nicolas Viovy;Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-01835855Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefhttp://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0481-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Elsevier BV Wang, Rong; Bai, Zhaohai; Chang, Jinfeng; Li, Qiushuang; Hristov, Alexander N.; Smith, Pete; Yin, Yulong; Tan, Zhiliang; Wang, Min;Animal-derived food production accounts for one-third of global anthropogenic greenhouse gas (GHG) emissions. Diet followed in China is ranked as low-carbon emitting (i.e., 0.21 t CO2-eq per capita in 2018, ranking at 145th of 168 countries) due to the low average animal-derived food consumption rate, and preferential consumption of animal-derived foods with lower GHG emissions (i.e., pork and eggs versus beef and milk). However, the projected increase in GHG emissions from livestock production poses great challenges for achieving China's "carbon neutrality" pledge. We propose that the livestock sector in China may achieve "climate neutrality" with net-zero warming around 2050 by implementing healthy diet and mitigation strategies to control enteric methane emissions.
The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Elsevier BV Wang, Rong; Bai, Zhaohai; Chang, Jinfeng; Li, Qiushuang; Hristov, Alexander N.; Smith, Pete; Yin, Yulong; Tan, Zhiliang; Wang, Min;Animal-derived food production accounts for one-third of global anthropogenic greenhouse gas (GHG) emissions. Diet followed in China is ranked as low-carbon emitting (i.e., 0.21 t CO2-eq per capita in 2018, ranking at 145th of 168 countries) due to the low average animal-derived food consumption rate, and preferential consumption of animal-derived foods with lower GHG emissions (i.e., pork and eggs versus beef and milk). However, the projected increase in GHG emissions from livestock production poses great challenges for achieving China's "carbon neutrality" pledge. We propose that the livestock sector in China may achieve "climate neutrality" with net-zero warming around 2050 by implementing healthy diet and mitigation strategies to control enteric methane emissions.
The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Innovation arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xinn.2022.100220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Xiaowei Guo; Xiali Mao; Wu Yu; Liujun Xiao; Mingming Wang; Shuai Zhang; Jinyang Zheng; Hangxin Zhou; Lun Luo; Jinfeng Chang; Zhou Shi; Zhongkui Luo;doi: 10.1111/gcb.16505
pmid: 36300560
AbstractSoil biogeochemical processes may present depth‐dependent responses to climate change, due to vertical environmental gradients (e.g., thermal and moisture regimes, and the quantity and quality of soil organic matter) along soil profile. However, it is a grand challenge to distinguish such depth dependence under field conditions. Here we present an innovative, cost‐effective and simple approach of field incubation of intact soil cores to explore such depth dependence. The approach adopts field incubation of two sets of intact soil cores: one incubated right‐side up (i.e., non‐inverted), and another upside down (i.e., inverted). This inversion keeps soil intact but changes the depth of the soil layer of same depth origin. Combining reciprocal translocation experiments to generate natural climate shift, we applied this incubation approach along a 2200 m elevational mountainous transect in southeast Tibetan Plateau. We measured soil respiration (Rs) from non‐inverted and inverted cores of 1 m deep, respectively, which were exchanged among and incubated at different elevations. The results indicated that Rs responds significantly (p < .05) to translocation‐induced climate shifts, but this response is depth‐independent. As the incubation proceeds, Rs from both non‐inverted and inverted cores become more sensitive to climate shifts, indicating higher vulnerability of persistent soil organic matter (SOM) to climate change than labile components, if labile substrates are assumed to be depleted with the proceeding of incubation. These results show in situ evidence that whole‐profile SOM mineralization is sensitive to climate change regardless of the depth location. Together with measurements of vertical physiochemical conditions, the inversion experiment can serve as an experimental platform to elucidate the depth dependence of the response of soil biogeochemical processes to climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Xiaowei Guo; Xiali Mao; Wu Yu; Liujun Xiao; Mingming Wang; Shuai Zhang; Jinyang Zheng; Hangxin Zhou; Lun Luo; Jinfeng Chang; Zhou Shi; Zhongkui Luo;doi: 10.1111/gcb.16505
pmid: 36300560
AbstractSoil biogeochemical processes may present depth‐dependent responses to climate change, due to vertical environmental gradients (e.g., thermal and moisture regimes, and the quantity and quality of soil organic matter) along soil profile. However, it is a grand challenge to distinguish such depth dependence under field conditions. Here we present an innovative, cost‐effective and simple approach of field incubation of intact soil cores to explore such depth dependence. The approach adopts field incubation of two sets of intact soil cores: one incubated right‐side up (i.e., non‐inverted), and another upside down (i.e., inverted). This inversion keeps soil intact but changes the depth of the soil layer of same depth origin. Combining reciprocal translocation experiments to generate natural climate shift, we applied this incubation approach along a 2200 m elevational mountainous transect in southeast Tibetan Plateau. We measured soil respiration (Rs) from non‐inverted and inverted cores of 1 m deep, respectively, which were exchanged among and incubated at different elevations. The results indicated that Rs responds significantly (p < .05) to translocation‐induced climate shifts, but this response is depth‐independent. As the incubation proceeds, Rs from both non‐inverted and inverted cores become more sensitive to climate shifts, indicating higher vulnerability of persistent soil organic matter (SOM) to climate change than labile components, if labile substrates are assumed to be depleted with the proceeding of incubation. These results show in situ evidence that whole‐profile SOM mineralization is sensitive to climate change regardless of the depth location. Together with measurements of vertical physiochemical conditions, the inversion experiment can serve as an experimental platform to elucidate the depth dependence of the response of soil biogeochemical processes to climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Jingmeng; Li, Wei; Ciais, Philippe; Li, Laurent; Chang, Jinfeng; Goll, Daniel; Gasser, Thomas; Huang, Xiaomeng; Devaraju, Narayanappa; Boucher, Olivier;AbstractBioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.
IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Jingmeng; Li, Wei; Ciais, Philippe; Li, Laurent; Chang, Jinfeng; Goll, Daniel; Gasser, Thomas; Huang, Xiaomeng; Devaraju, Narayanappa; Boucher, Olivier;AbstractBioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.
IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Science China Press., Co. Ltd. Yuanhe, Yang; Yue, Shi; Wenjuan, Sun; Jinfeng, Chang; Jianxiao, Zhu; Leiyi, Chen; Xin, Wang; Yanpei, Guo; Hongtu, Zhang; Lingfei, Yu; Shuqing, Zhao; Kang, Xu; Jiangling, Zhu; Haihua, Shen; Yuanyuan, Wang; Yunfeng, Peng; Xia, Zhao; Xiangping, Wang; Huifeng, Hu; Shiping, Chen; Mei, Huang; Xuefa, Wen; Shaopeng, Wang; Biao, Zhu; Shuli, Niu; Zhiyao, Tang; Lingli, Liu; Jingyun, Fang;pmid: 35146581
Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (-0.2±0.9) Pg C yr-1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr-1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20-0.25 Pg C yr-1 in China during the past decades, and predict it to be 0.15-0.52 Pg C yr-1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.
Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 280 citations 280 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Science China Press., Co. Ltd. Yuanhe, Yang; Yue, Shi; Wenjuan, Sun; Jinfeng, Chang; Jianxiao, Zhu; Leiyi, Chen; Xin, Wang; Yanpei, Guo; Hongtu, Zhang; Lingfei, Yu; Shuqing, Zhao; Kang, Xu; Jiangling, Zhu; Haihua, Shen; Yuanyuan, Wang; Yunfeng, Peng; Xia, Zhao; Xiangping, Wang; Huifeng, Hu; Shiping, Chen; Mei, Huang; Xuefa, Wen; Shaopeng, Wang; Biao, Zhu; Shuli, Niu; Zhiyao, Tang; Lingli, Liu; Jingyun, Fang;pmid: 35146581
Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (-0.2±0.9) Pg C yr-1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr-1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20-0.25 Pg C yr-1 in China during the past decades, and predict it to be 0.15-0.52 Pg C yr-1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.
Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 280 citations 280 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Scientia Sinica Vita... arrow_drop_down Science China Life SciencesArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1360/ssv-2021-0362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu