Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
31 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Shaomin Liu;
    Shaomin Liu
    ORCID
    Harvested from ORCID Public Data File

    Shaomin Liu in OpenAIRE
    Hari B. Vuthaluru; orcid Hussein A. Mohammed;
    Hussein A. Mohammed
    ORCID
    Harvested from ORCID Public Data File

    Hussein A. Mohammed in OpenAIRE

    Abstract Background Parabolic Trough Solar Collector (PTSC) is one of the most popular and an effective device that converts solar radiation into a heat or useful energy. However, it suffers from high temperature gradient and low thermal efficiency. The solution for this problem is to use new advanced coolants (hybrid nanofluids) in order to enhance PTSC's thermal efficiency. Methods A numerical analysis on the thermo-hydraulic performance of a PTSC receiver's tube equipped with conical turbulators is presented. The Navier-Stokes equations are solved using Finite Volume Method (FVM) coupled with Monte Carlo Ray Tracing (MCRT) method. The flow and thermal characteristics as well as entropy generation of the PTSC's receiver tube are investigated for three hybrid nanofluids (Ag-SWCNT, Ag-MWCNT, and Ag-MgO) having a mixing ratio of (50:50) dispersed in Syltherm oil 800, Reynolds number (5000 to 100,000) and fluid inlet temperatures (400 to 650 K). Significant findings The conical turbulators effectively augmented the thermal performance by 233.4% utilising Ag-SWCNT/Syltherm oil instead of pure Syltherm oil. The performance evaluation criterion is found to be in the range of 0.9–1.82. The thermal and exergetic efficiencies increased by 11.5% and 18.2%, respectively. The maximum decrement in the entropy generation rate and entropy generation ratio are 42.7% and 33.7%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Taiwa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Taiwan Institute of Chemical Engineers
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Taiwa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Taiwan Institute of Chemical Engineers
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Megan Soh; orcid Jiuan Jing Chew;
    Jiuan Jing Chew
    ORCID
    Harvested from ORCID Public Data File

    Jiuan Jing Chew in OpenAIRE
    orcid Shaomin Liu;
    Shaomin Liu
    ORCID
    Harvested from ORCID Public Data File

    Shaomin Liu in OpenAIRE
    orcid bw Jaka Sunarso;
    Jaka Sunarso
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Jaka Sunarso in OpenAIRE

    Thermochemical conversion process is one of the most promising routes to harness the potential of oil palm biomass as renewable energy alternative in Malaysia. Despite this potential, there is a lack of comprehensive study that characterises the complete spectrum of oil palm biomass. In this work, thermogravimetric-mass spectrometry (TG-MS) results of five oil palm biomass, i.e., oil palm trunk (OPT), palm kernel shell (PKS), oil palm frond (OPF), mesocarp fibre (MF) and empty fruit bunch (EFB), in pyrolysis and combustion conditions are presented and analysed. Kinetic studies on the TG data of these biomass were performed using Coats–Redfern integral method and Sestak–Berggren function to determine the activation energy and the reaction mechanism at different thermal decomposition stages. Pyrolysis of hemicellulose, cellulose, and lignin occurs at 140–331, 235–435, and 380–600 °C, respectively, while combustion of hemicellulose, cellulose, and lignin took place at 140–313, 225–395, and 372–600 °C, respectively. The activation energy was the highest for cellulose decomposition in both pyrolysis and combustion cases. Phase boundary reaction dominated during hemicellulose and cellulose decompositions, while nucleation dominated during lignin decomposition and char oxidation. MS results show that majority of the gases came out between 250 and 600 °C, mainly from CH4 and H2O in pyrolysis case and from CH4, CO2 and H2O in combustion case. Other than these major gases, NO, NO2 and SO2 were also generated although in much lower proportion compared to these gases. Based on TG-MS results, the best potential application for each biomass was also identified where OPT and OPF are suggested for gasification and fermentation, PKS for bio-char production and combustion, MF for bio-oil production, combustion, and bio-char production and EFB for bio-oil and bio-char production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2019 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhang, Y.; Sunarso, J.; orcid Liu, Shaomin;
    Liu, Shaomin
    ORCID
    Harvested from ORCID Public Data File

    Liu, Shaomin in OpenAIRE
    orcid Wang, R.;
    Wang, R.
    ORCID
    Harvested from ORCID Public Data File

    Wang, R. in OpenAIRE

    Abstract Carbon dioxide (CO 2 ) is a greenhouse gas found primarily as a main combustion product of fossil fuel as well as a component in natural gas, biogas and landfill gas. The interest to remove CO 2 from those gas streams to obtain fuel with enhanced energy content and prevent corrosion problems in the gas transportation system, in addition to CO 2 implications to the climate change, has driven the development of CO 2 separation process technology. One type of technology which has experienced substantial growth, breakthroughs and advances during past decades is membrane-based technology. The attractive features offered by this technology include high energy efficiency, simplicity in design and construction of membrane modules and environmental compatibility. The objective of this review is to overview the different types of membranes available for use including their working principles, current status and development which form the primary determinants of separation performance and efficiency. The emphasis is toward CO 2 /CH 4 separation, considering its substantial and direct relevance to the gas industry. To this end, discussion is made to cover polymeric gas permeation membranes; CO 2 -selective facilitated transport membranes, hollow fiber gas–liquid membrane contactors, inorganic membranes and mixed matrix membranes. The market for CO 2 separation is currently dominated by polymeric membranes due to their relatively low manufacturing cost and processing ability into flat sheet and hollow fiber configurations as well as well-documented research studies. While there have been immensely successful membrane preparation and development techniques with consequential remarkable performance for each type of membrane. Each type of membrane brings associated advantages and drawbacks related to the characteristic transport mechanism for specific application conditions. Inorganic membranes, for example, are very suitable for high temperature CO 2 separation in excess of 400 °C while all other membranes can be applied at lower temperatures. The recent emergence of mixed matrix membranes has allowed the innovative approach to combine the advantages offered by inorganic and polymeric materials.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Leo, A.; orcid Liu, S.;
    Liu, S.
    ORCID
    Harvested from ORCID Public Data File

    Liu, S. in OpenAIRE
    orcid Diniz Da Costa, J. C.;
    Diniz Da Costa, J. C.
    ORCID
    Harvested from ORCID Public Data File

    Diniz Da Costa, J. C. in OpenAIRE

    Mixed conducting membranes can be used for the separation of oxygen from air in both coal gasification and oxy-fuel power plants. In this review paper, the basic perovskite and non-perovskite structures, composition, properties and performance are addressed. Two typical perovskite materials, BSCF and LSCF, show promise in industrial applications as their oxygen fluxes are at least one order of magnitude higher than non-perovskite membranes. BSCF membranes are now delivering oxygen fluxes in excess of 5 ml min−1 cm−2. Latest developments in perovskite composition, effects of impurities in membrane performance and membrane geometry are discussed giving an insight into the potential utilisation in clean energy delivery processes. Strategies for improving membranes performance using unit operations with different geometries and possible future technologies are also addressed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhang, X.; orcid Wang, B.;
    Wang, B.
    ORCID
    Harvested from ORCID Public Data File

    Wang, B. in OpenAIRE
    orcid Sunarso, J.;
    Sunarso, J.
    ORCID
    Harvested from ORCID Public Data File

    Sunarso, J. in OpenAIRE
    orcid Liu, Shaomin;
    Liu, Shaomin
    ORCID
    Harvested from ORCID Public Data File

    Liu, Shaomin in OpenAIRE
    +1 Authors

    AbstractGraphene, a one‐atom‐layer‐thick carbon‐structured material, has attracted global research attention due to its unique two‐dimensional structure, high electrical conductivity, superior electron‐transfer properties and charge‐carrier charge‐carrier mobility, large specific surface area, high transparency, and good mechanical properties. After its successful isolation into the free standing form in 2004, various graphene nanostructures have been developed and incorporated as key components in supercapacitors, lithium‐ion batteries, solar cells, and fuel cells; the energy supporting devices which hold the key role to sustain our energy demand well into the future. Herein, we summarized the recent progress and performance of these graphene–nanostructure‐based devices.This article is categorized under: Energy Infrastructure > Science and Materials Energy and Development > Science and Materials Energy Research & Innovation > Science and Materials

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Wiley Interdisciplinary Reviews Energy and Environment
    Article . 2012 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Wiley Interdisciplinary Reviews Energy and Environment
      Article . 2012 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mohammed, Hussein A.;
    Mohammed, Hussein A.
    ORCID
    Harvested from ORCID Public Data File

    Mohammed, Hussein A. in OpenAIRE
    Fathinia, F.; Vuthaluru, Hari B.; orcid Liu, Shaomin;
    Liu, Shaomin
    ORCID
    Harvested from ORCID Public Data File

    Liu, Shaomin in OpenAIRE

    Abstract The separation and reattachment flow occurs in a backward-facing step (BFS) is available in various industrial applications such as gas turbine engines, combustors, aircraft, buildings and many other devices of heat transfer. It represents the pillar key of determining the flow structure and significantly affecting the heat transfer mechanism. This work studies numerically the effects of four various types of blockage shapes on transient laminar mixed convective nanofluid flow over a horizontal BFS placed in a duct. Nanoparticles of SiO2 with ethylene glycol as a base fluid at 2% of volume fraction and 20 nm of nanoparticle diameter are considered to examine the effect of different blockage shape on the thermal and flow fields at different time scales. The downstream of the step is kept at a constant heat flux of 500 W/m2, while other walls and sides of the duct are considered thermally insulated. The Reynolds number used in this study is in the range of 50–200. The relevant governing equations (continuity, momentum and energy) along with the boundary conditions are solved with the aid of finite volume method (FVM). The results reveal that after dimensionless time of τ = 5 the trend of nanofluid flow and recirculation area near the step and behind the blockage shape does not change significantly and this time is selected as a quasi-steady state time and the point of comparison. The velocity distributions for front facing triangular blockage decreased and this blockage shape has the highest value of skin friction coefficient beyond Re = 150. The results indicate that the front facing triangular blockage has the highest value of average Nusselt number and performance evaluation index while the trapezoidal blockage has the lowest value

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Powder Technologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Powder Technology
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Powder Technologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Powder Technology
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yegeng Sun; Wei Zhang; Qing Wang; orcid Ning Han;
    Ning Han
    ORCID
    Harvested from ORCID Public Data File

    Ning Han in OpenAIRE
    +5 Authors

    A beancurd-derived mesoporous carbon (NSC) was prepared by an environmentally friendly procedure, and then it was investigated as Au@Pd@Pt core-shell catalysts support (Au@Pd@Pt-NSC) for oxygen reduction reaction (ORR). The Au@Pd@Pt-NSC (E1/2 = 0.91 V) has a marginally negative ORR half-wave potential compared with other materials, in particular Pt/C (E1/2 = 0.87 V) and Au@Pd@Pt-C (E1/2 = 0.81 V). The specific and mass activities of the Au@Pd@Pt-NSC were 5 and 13 times higher than the commercial a Pt/C catalyst. After 20000 cycles of rapid durability test, the Au@Pd@Pt-NSC sample showed a loss of just 4.9% compared with the initial ECSA area, which can be attributed to the favorable interaction between Au@Pd@Pt and NSC. These results can be considered of environmental relevance and high potential applicability.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Research
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Research
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Shaomin Liu;
    Shaomin Liu
    ORCID
    Harvested from ORCID Public Data File

    Shaomin Liu in OpenAIRE
    Haodong Shi; Haodong Shi; orcid Qiang Tian;
    Qiang Tian
    ORCID
    Harvested from ORCID Public Data File

    Qiang Tian in OpenAIRE
    +8 Authors

    This review examines the latest research on the design and engineering of nanoreactors for application in metal–chalcogen batteries.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environment...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2021 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environment...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2021 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Wang, W.;
    Wang, W.
    ORCID
    Harvested from ORCID Public Data File

    Wang, W. in OpenAIRE
    orcid Su, Chao;
    Su, Chao
    ORCID
    Harvested from ORCID Public Data File

    Su, Chao in OpenAIRE
    Ran, R.; orcid Zhao, B.;
    Zhao, B.
    ORCID
    Harvested from ORCID Public Data File

    Zhao, B. in OpenAIRE
    +3 Authors

    AbstractThe potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm−2 at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ChemSusChem
    Article . 2014 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ChemSusChem
    Article . 2015
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ChemSusChem
      Article . 2014 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ChemSusChem
      Article . 2015
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jincheng Mu; orcid Xinyong Li;
    Xinyong Li
    ORCID
    Harvested from ORCID Public Data File

    Xinyong Li in OpenAIRE
    Xinyong Li; orcid Shiying Fan;
    Shiying Fan
    ORCID
    Harvested from ORCID Public Data File

    Shiying Fan in OpenAIRE
    +7 Authors

    The emergence of microbial fuel cell (MFC) technology that can effectively recycle renewable energy from organic pollutants has been regarded as a promising and environmentally friendly route that could be widely used in numerous fields.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nanoscalearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nanoscale
    Article . 2019 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    Nanoscale
    Article . 2019
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nanoscalearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nanoscale
      Article . 2019 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      Nanoscale
      Article . 2019
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right
Powered by OpenAIRE graph