- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:AKA | The effect of climate cha..., UKRI | Explaining and Predicting..., AKA | Conservation policy in a ... +2 projectsAKA| The effect of climate change on dynamics of zoonoses in migratory birds and bats across Europe ,UKRI| Explaining and Predicting the Migration and Phenology of Europe-African Migratory Birds ,AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,NSF| Belmont Forum Collaborative Research: Conservation policy in a changing world: integrating citizen science data from national monitoring schemes to model impacts of global change s ,AKA| Changes in species communities: role of climate change, human land use and community complexityAuthors: Christine Howard; Emma-Liina Marjakangas; Alejandra Morán-Ordóñez; Pietro Milanesi; +67 AuthorsChristine Howard; Emma-Liina Marjakangas; Alejandra Morán-Ordóñez; Pietro Milanesi; Aleksandre Abuladze; Karen Aghababyan; Vitalie Ajder; Volen Arkumarev; Dawn E. Balmer; Hans-Günther Bauer; Colin M. Beale; Taulant Bino; Kerem Ali Boyla; Ian J. Burfield; Brian Burke; Brian Caffrey; Tomasz Chodkiewicz; Juan Carlos Del Moral; Vlatka Dumbovic Mazal; Néstor Fernández; Lorenzo Fornasari; Bettina Gerlach; Carlos Godinho; Sergi Herrando; Christina Ieronymidou; Alison Johnston; Mihailo Jovicevic; Mikhail Kalyakin; Verena Keller; Peter Knaus; Dražen Kotrošan; Tatiana Kuzmenko; Domingos Leitão; Åke Lindström; Qenan Maxhuni; Tomaž Mihelič; Tibor Mikuska; Blas Molina; Károly Nagy; David Noble; Ingar Jostein Øien; Jean-Yves Paquet; Clara Pladevall; Danae Portolou; Dimitrije Radišić; Saša Rajkov; Draženko Z. Rajković; Liutauras Raudonikis; Thomas Sattler; Darko Saveljić; Paul Shimmings; Jovica Sjenicic; Karel Šťastný; Stoycho Stoychev; Iurii Strus; Christoph Sudfeldt; Elchin Sultanov; Tibor Szép; Norbert Teufelbauer; Danka Uzunova; Chris A. M. van Turnhout; Metodija Velevski; Thomas Vikstrøm; Alexandre Vintchevski; Olga Voltzit; Petr Voříšek; Tomasz Wilk; Damaris Zurell; Lluís Brotons; Aleksi Lehikoinen; Stephen G. Willis;pmid: 37474503
pmc: PMC10359363
AbstractClimate change has been associated with both latitudinal and elevational shifts in species’ ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species’ traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species’ range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species’ ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.
Archivio istituziona... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28025Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28025Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:American Association for the Advancement of Science (AAAS) Aleksi Lehikoinen; Richard D. Gregory; Thomas Sattler; Ruud P. B. Foppen; Jean-Yves Paquet; John R. Sauer; Stuart H. M. Butchart; Stuart H. M. Butchart; David G. Noble; Stephen G. Willis; Frédéric Jiguet; Virginia Escandell; Tibor Szép; Arco J. van Strien; Olivia Crowe; Chris A. M. van Turnhout; Sergi Herrando; Jiri Reif; Tomasz Chodkiewicz; Philip A. Stephens; Sven Trautmann; Åke Lindström; Henning Heldbjerg; Petr Vorisek; Lluís Brotons; Rhys E. Green; Rhys E. Green; Norbert Teufelbauer; Jaanus Elts; Przemysław Chylarecki; Lucy R. Mason; Ainars Aunins; Tommaso Campedelli; Magne Husby; Jamie Alison;Birds populations allied in abundance Changes in climate can cause populations of species to decline, to increase, or to remain steady. Stephens et al. looked across species of common birds in Europe and the United States. Despite many differences between the two regions, expectations about how a species might respond to climate change did predict actual responses. Species predicted to benefit from increasing temperatures, or their associated effects, tended to increase, whereas those predicted to be negatively affected declined. Thus, even across widely varying ecological conditions and communities, climate change can be expected to alter population sizes. Science , this issue p. 84
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 243 citations 243 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Tyler A. Hallman; Jérôme Guélat; Sylvain Antoniazza; Marc Kéry; Thomas Sattler;doi: 10.1002/ecs2.4194
AbstractGlobal change in climate and land use has profound effects on species' geographic and elevational distributions. In European birds, while species are predicted to track their climatic niches upslope, lowland agricultural intensification and high‐elevation land abandonment can drive elevational shifts. Species traits that can predict response to change in climate and land use can inform conservation, but a thorough examination of their relationships with elevational shifts in European birds is lacking. We estimate the change in the elevational distributions of 71 species from 1996 to 2016 in a region of the western Palearctic with wide elevational gradients (approximately 3000 m) and large changes in temperature. We model the relationships between elevational shifts and species traits associated with resource preference and adaptive capacity at five reference points including the cool edge, warm edge, and the core of species' elevational distributions. When intermediate reference points were removed, changes to the results were negligible, indicating that three reference points are likely sufficient. We found significant upslope and downslope shifts in 56% and 23% of our study species, respectively. Asymmetric rates of shifts in the cool and warm edges caused significant contractions in elevational extent in 30% of our study species. The effect of elevational preference (i.e., midpoint elevation) was habitat dependent. Movement in alpine birds was unidirectionally upslope, with nearly half displaying significant or apparent elevational range contractions. In woodland birds, asymmetries of shifts in reference points led to expansions in extent in low‐elevation species and contractions in high‐elevation species. Generally, migrants, species with smaller mass, smaller relative brain size, smaller hand‐wing index, and generalists in diet, habitat, and elevation had greater upslope shifts. While elevational shifts in European birds were heterogenous and species‐specific, many were rapid, and species traits associated with resource preference and adaptive capacity were associated with common patterns of elevation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Other literature type 2023Publisher:OpenAlex Authors: Christine Howard; Emma‐Liina Marjakangas; Alejandra Morán‐Ordóñez; Pietro Milanesi; +62 AuthorsChristine Howard; Emma‐Liina Marjakangas; Alejandra Morán‐Ordóñez; Pietro Milanesi; Volen Arkumarev; Dawn E. Balmer; Colin M. Beale; Taulant Bino; Ian J. Burfield; Brian J. Burke; Brian Caffrey; Tomasz Chodkiewicz; Juan Carlos del Moral; Vlatka Dumbović Mazal; Néstor Fernández; Lorenzo Fornasari; Bettina Linnartz‐Gerlach; Carlos Godinho; Sergi Herrando; Christina Ieronymidou; Alison Johnston; Mihailo Jovičević; Mikhail Kalyakin; Véréna Keller; Peter Knaus; Dražen Kotrošan; Tatiana Kuzmenko; Domingos Leitão; Åke Lindström; Qenan Maxhuni; Tomaž Mihelič; Tibor Mikuška; Blas Molina; Károly Nagy; David G. Noble; Ingar Jostein Øien; Jean‐Yves Paquet; Clara Pladevall; Danae Portolou; Dimitrije Radišić; Saša Rajkov; Draženko Rajković; Liutauras Raudonikis; Thomas Sattler; Darko Saveljić; Paul Shimmings; Jovica Sjeničić; Karel Šťastný; Stoycho Stoychev; Iurii Strus; Christoph Sudfeldt; Elchin Sultanov; Tibor Szép; Norbert Teufelbauer; Danka Uzunova; Chris van Turnhout; Metodija Velevski; Thomas Vikstrøm; Alexandre Vintchevski; Olga Voltzit; Petr Voříšek; Tomasz Wilk; Damaris Zurell; Lluı́s Brotons; Aleksi Lehikoinen; Stephen G. Willis;Le fichier de données source contient des données pour tracer les figures 1,2 et 3 et les figures supplémentaires S1, S3 à S12 et le tableau supplémentaire S1. Les données supplémentaires contiennent les données sur les caractères de l'espèce. Des références pour les sources de données peuvent être trouvées dans la feuille séparée. Les traits à noter ont été rassemblés pour 378 espèces d'oiseaux nicheurs européens, mais les données sur l'étendue de l'habitat n'étaient disponibles que pour 336 espèces. Les sources de données sur les espèces se trouvent dans l'onglet Références. El archivo de datos de origen contiene datos para trazar las Figuras 1,2 y 3, y las Figuras Complementarias S1, S3 -S12 y la Tabla Complementaria S1. Los datos complementarios contienen datos de rasgos de las especies. Las referencias de las fuentes de datos se pueden encontrar en la hoja separada. Los rasgos de la nota se recopilaron para 378 especies de aves reproductoras europeas, pero los datos de amplitud del hábitat solo estaban disponibles para 336 especies. Las fuentes de datos de especies se pueden encontrar en la pestaña Referencias. Source data file contains data for plotting Figures 1,2, and 3, and Supplementary Figures S1, S3 -S12, and Supplementary Table S1. Supplementary data contains species' trait data. References for data sources can be found in the separate sheet. Note traits were collated for 378 species of European breeding bird, but habitat breadth data were only available for 336 species. Sources of species data can be found in the References tab. يحتوي ملف البيانات المصدر على بيانات لرسم الأشكال 1 و 2 و 3 والأشكال التكميلية S1 و S3 - S12 والجدول التكميلي S1. تحتوي البيانات التكميلية على بيانات سمات الأنواع. يمكن العثور على مراجع لمصادر البيانات في الورقة المنفصلة. تم جمع سمات الملاحظة لـ 378 نوعًا من طيور التكاثر الأوروبية، لكن بيانات اتساع الموائل كانت متاحة فقط لـ 336 نوعًا. يمكن العثور على مصادر بيانات الأنواع في علامة التبويب المراجع.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Wiley Funded by:AKA | The combined effect of cl...AKA| The combined effect of climate change and habitat protection on population changes and range shifts in birdsLehikoinen, Aleksi; Brotons, Lluís; Calladine, John; Campedelli, Tommaso; Escandell, Virginia; Flousek, Jiri; Grueneberg, Christoph; Haas, Fredrik; Harris, Sarah; Herrando, Sergi; Husby, Magne; Jiguet, Frederic; Kålås, John Atle; Lindström, Åke; Lorrilliere, Romain; Molina, Blas; Pladevall, Clara; Calvi, Gianpiero; Sattler, Thomas; Schmid, Hans; Sirkiä, Päivi; Teufelbauer, Norbert; Trautmann, Sven;AbstractMountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south‐western (Iberia) and south‐central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (−7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant −10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.
Global Change Biolog... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:The Royal Society Funded by:DFGDFGDamaris Zurell; Katrin Schifferle; Sergi Herrando; Verena Keller; Aleksi Lehikoinen; Thomas Sattler; Levin Wiedenroth;Species respond dynamically to climate change and exhibit time lags. Consequently, species may not occupy their full climatic niche during range shifting. Here, we assessed climate niche tracking during recent range shifts of European and United States (US) birds. Using data from two European bird atlases and from the North American Breeding Bird Survey between the 1980s and 2010s, we analysed range overlap and climate niche overlap based on kernel density estimation. Phylogenetic multiple regression was used to assess the effect of species morphological, ecological and biogeographic traits on range and niche metrics. European birds shifted their ranges north and north-eastwards, US birds westwards. Range unfilling was lower than expected by null models, and niche expansion was more common than niche unfilling. Also, climate niche tracking was generally lower in US birds and poorly explained by species traits. Overall, our results suggest that dispersal limitations were minor in range shifting birds in Europe and the USA while delayed extinctions from unfavourable areas seem more important. Regional differences could be related to differences in land use history and monitoring schemes. Comparative analyses of range and niche shifts provide a useful screening approach for identifying the importance of transient dynamics and time-lagged responses to climate change. This article is part of the theme issue ‘Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:Wiley Funded by:SNSF | FeedBaCks: Feedbacks betw..., SNSF | FutureWebSNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| FutureWebMattia Brambilla; Diego Rubolini; Ojan Appukuttan; Gianpiero Calvi; Dirk Nikolaus Karger; Primož Kmecl; Tomaž Mihelič; Thomas Sattler; Benjamin Seaman; Norbert Teufelbauer; Johannes Wahl; Claudio Celada;AbstractIdentifying climate refugia is key to effective biodiversity conservation under a changing climate, especially for mountain‐specialist species adapted to cold conditions and highly threatened by climate warming. We combined species distribution models (SDMs) with climate forecasts to identify climate refugia for high‐elevation bird species (Lagopus muta, Anthus spinoletta, Prunella collaris, Montifringilla nivalis) in the European Alps, where the ecological effects of climate changes are particularly evident and predicted to intensify. We considered future (2041–2070) conditions (SSP585 scenario, four climate models) and identified three types of refugia: (1) in‐situ refugia potentially suitable under both current and future climate conditions, ex‐situ refugia suitable (2) only in the future according to all future conditions, or (3) under at least three out of four future conditions. SDMs were based on a very large, high‐resolution occurrence dataset (2901–12,601 independent records for each species) collected by citizen scientists. SDMs were fitted using different algorithms, balancing statistical accuracy, ecological realism and predictive/extrapolation ability. We selected the most reliable ones based on consistency between training and testing data and extrapolation over distant areas. Future predictions revealed that all species (with the partial exception of A. spinoletta) will undergo a range contraction towards higher elevations, losing 17%–59% of their current range (larger losses in L. muta). We identified ~15,000 km2 of the Alpine region as in‐situ refugia for at least three species, of which 44% are currently designated as protected areas (PAs; 18%–66% among countries). Our findings highlight the usefulness of spatially accurate data collected by citizen scientists, and the importance of model testing by extrapolating over independent areas. Climate refugia, which are only partly included within the current PAs system, should be priority sites for the conservation of Alpine high‐elevation species and habitats, where habitat degradation/alteration by human activities should be prevented to ensure future suitability for alpine species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:AKA | The effect of climate cha..., UKRI | Explaining and Predicting..., AKA | Conservation policy in a ... +2 projectsAKA| The effect of climate change on dynamics of zoonoses in migratory birds and bats across Europe ,UKRI| Explaining and Predicting the Migration and Phenology of Europe-African Migratory Birds ,AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,NSF| Belmont Forum Collaborative Research: Conservation policy in a changing world: integrating citizen science data from national monitoring schemes to model impacts of global change s ,AKA| Changes in species communities: role of climate change, human land use and community complexityAuthors: Christine Howard; Emma-Liina Marjakangas; Alejandra Morán-Ordóñez; Pietro Milanesi; +67 AuthorsChristine Howard; Emma-Liina Marjakangas; Alejandra Morán-Ordóñez; Pietro Milanesi; Aleksandre Abuladze; Karen Aghababyan; Vitalie Ajder; Volen Arkumarev; Dawn E. Balmer; Hans-Günther Bauer; Colin M. Beale; Taulant Bino; Kerem Ali Boyla; Ian J. Burfield; Brian Burke; Brian Caffrey; Tomasz Chodkiewicz; Juan Carlos Del Moral; Vlatka Dumbovic Mazal; Néstor Fernández; Lorenzo Fornasari; Bettina Gerlach; Carlos Godinho; Sergi Herrando; Christina Ieronymidou; Alison Johnston; Mihailo Jovicevic; Mikhail Kalyakin; Verena Keller; Peter Knaus; Dražen Kotrošan; Tatiana Kuzmenko; Domingos Leitão; Åke Lindström; Qenan Maxhuni; Tomaž Mihelič; Tibor Mikuska; Blas Molina; Károly Nagy; David Noble; Ingar Jostein Øien; Jean-Yves Paquet; Clara Pladevall; Danae Portolou; Dimitrije Radišić; Saša Rajkov; Draženko Z. Rajković; Liutauras Raudonikis; Thomas Sattler; Darko Saveljić; Paul Shimmings; Jovica Sjenicic; Karel Šťastný; Stoycho Stoychev; Iurii Strus; Christoph Sudfeldt; Elchin Sultanov; Tibor Szép; Norbert Teufelbauer; Danka Uzunova; Chris A. M. van Turnhout; Metodija Velevski; Thomas Vikstrøm; Alexandre Vintchevski; Olga Voltzit; Petr Voříšek; Tomasz Wilk; Damaris Zurell; Lluís Brotons; Aleksi Lehikoinen; Stephen G. Willis;pmid: 37474503
pmc: PMC10359363
AbstractClimate change has been associated with both latitudinal and elevational shifts in species’ ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species’ traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species’ range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species’ ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.
Archivio istituziona... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28025Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28025Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:American Association for the Advancement of Science (AAAS) Aleksi Lehikoinen; Richard D. Gregory; Thomas Sattler; Ruud P. B. Foppen; Jean-Yves Paquet; John R. Sauer; Stuart H. M. Butchart; Stuart H. M. Butchart; David G. Noble; Stephen G. Willis; Frédéric Jiguet; Virginia Escandell; Tibor Szép; Arco J. van Strien; Olivia Crowe; Chris A. M. van Turnhout; Sergi Herrando; Jiri Reif; Tomasz Chodkiewicz; Philip A. Stephens; Sven Trautmann; Åke Lindström; Henning Heldbjerg; Petr Vorisek; Lluís Brotons; Rhys E. Green; Rhys E. Green; Norbert Teufelbauer; Jaanus Elts; Przemysław Chylarecki; Lucy R. Mason; Ainars Aunins; Tommaso Campedelli; Magne Husby; Jamie Alison;Birds populations allied in abundance Changes in climate can cause populations of species to decline, to increase, or to remain steady. Stephens et al. looked across species of common birds in Europe and the United States. Despite many differences between the two regions, expectations about how a species might respond to climate change did predict actual responses. Species predicted to benefit from increasing temperatures, or their associated effects, tended to increase, whereas those predicted to be negatively affected declined. Thus, even across widely varying ecological conditions and communities, climate change can be expected to alter population sizes. Science , this issue p. 84
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 243 citations 243 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Tyler A. Hallman; Jérôme Guélat; Sylvain Antoniazza; Marc Kéry; Thomas Sattler;doi: 10.1002/ecs2.4194
AbstractGlobal change in climate and land use has profound effects on species' geographic and elevational distributions. In European birds, while species are predicted to track their climatic niches upslope, lowland agricultural intensification and high‐elevation land abandonment can drive elevational shifts. Species traits that can predict response to change in climate and land use can inform conservation, but a thorough examination of their relationships with elevational shifts in European birds is lacking. We estimate the change in the elevational distributions of 71 species from 1996 to 2016 in a region of the western Palearctic with wide elevational gradients (approximately 3000 m) and large changes in temperature. We model the relationships between elevational shifts and species traits associated with resource preference and adaptive capacity at five reference points including the cool edge, warm edge, and the core of species' elevational distributions. When intermediate reference points were removed, changes to the results were negligible, indicating that three reference points are likely sufficient. We found significant upslope and downslope shifts in 56% and 23% of our study species, respectively. Asymmetric rates of shifts in the cool and warm edges caused significant contractions in elevational extent in 30% of our study species. The effect of elevational preference (i.e., midpoint elevation) was habitat dependent. Movement in alpine birds was unidirectionally upslope, with nearly half displaying significant or apparent elevational range contractions. In woodland birds, asymmetries of shifts in reference points led to expansions in extent in low‐elevation species and contractions in high‐elevation species. Generally, migrants, species with smaller mass, smaller relative brain size, smaller hand‐wing index, and generalists in diet, habitat, and elevation had greater upslope shifts. While elevational shifts in European birds were heterogenous and species‐specific, many were rapid, and species traits associated with resource preference and adaptive capacity were associated with common patterns of elevation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Other literature type 2023Publisher:OpenAlex Authors: Christine Howard; Emma‐Liina Marjakangas; Alejandra Morán‐Ordóñez; Pietro Milanesi; +62 AuthorsChristine Howard; Emma‐Liina Marjakangas; Alejandra Morán‐Ordóñez; Pietro Milanesi; Volen Arkumarev; Dawn E. Balmer; Colin M. Beale; Taulant Bino; Ian J. Burfield; Brian J. Burke; Brian Caffrey; Tomasz Chodkiewicz; Juan Carlos del Moral; Vlatka Dumbović Mazal; Néstor Fernández; Lorenzo Fornasari; Bettina Linnartz‐Gerlach; Carlos Godinho; Sergi Herrando; Christina Ieronymidou; Alison Johnston; Mihailo Jovičević; Mikhail Kalyakin; Véréna Keller; Peter Knaus; Dražen Kotrošan; Tatiana Kuzmenko; Domingos Leitão; Åke Lindström; Qenan Maxhuni; Tomaž Mihelič; Tibor Mikuška; Blas Molina; Károly Nagy; David G. Noble; Ingar Jostein Øien; Jean‐Yves Paquet; Clara Pladevall; Danae Portolou; Dimitrije Radišić; Saša Rajkov; Draženko Rajković; Liutauras Raudonikis; Thomas Sattler; Darko Saveljić; Paul Shimmings; Jovica Sjeničić; Karel Šťastný; Stoycho Stoychev; Iurii Strus; Christoph Sudfeldt; Elchin Sultanov; Tibor Szép; Norbert Teufelbauer; Danka Uzunova; Chris van Turnhout; Metodija Velevski; Thomas Vikstrøm; Alexandre Vintchevski; Olga Voltzit; Petr Voříšek; Tomasz Wilk; Damaris Zurell; Lluı́s Brotons; Aleksi Lehikoinen; Stephen G. Willis;Le fichier de données source contient des données pour tracer les figures 1,2 et 3 et les figures supplémentaires S1, S3 à S12 et le tableau supplémentaire S1. Les données supplémentaires contiennent les données sur les caractères de l'espèce. Des références pour les sources de données peuvent être trouvées dans la feuille séparée. Les traits à noter ont été rassemblés pour 378 espèces d'oiseaux nicheurs européens, mais les données sur l'étendue de l'habitat n'étaient disponibles que pour 336 espèces. Les sources de données sur les espèces se trouvent dans l'onglet Références. El archivo de datos de origen contiene datos para trazar las Figuras 1,2 y 3, y las Figuras Complementarias S1, S3 -S12 y la Tabla Complementaria S1. Los datos complementarios contienen datos de rasgos de las especies. Las referencias de las fuentes de datos se pueden encontrar en la hoja separada. Los rasgos de la nota se recopilaron para 378 especies de aves reproductoras europeas, pero los datos de amplitud del hábitat solo estaban disponibles para 336 especies. Las fuentes de datos de especies se pueden encontrar en la pestaña Referencias. Source data file contains data for plotting Figures 1,2, and 3, and Supplementary Figures S1, S3 -S12, and Supplementary Table S1. Supplementary data contains species' trait data. References for data sources can be found in the separate sheet. Note traits were collated for 378 species of European breeding bird, but habitat breadth data were only available for 336 species. Sources of species data can be found in the References tab. يحتوي ملف البيانات المصدر على بيانات لرسم الأشكال 1 و 2 و 3 والأشكال التكميلية S1 و S3 - S12 والجدول التكميلي S1. تحتوي البيانات التكميلية على بيانات سمات الأنواع. يمكن العثور على مراجع لمصادر البيانات في الورقة المنفصلة. تم جمع سمات الملاحظة لـ 378 نوعًا من طيور التكاثر الأوروبية، لكن بيانات اتساع الموائل كانت متاحة فقط لـ 336 نوعًا. يمكن العثور على مصادر بيانات الأنواع في علامة التبويب المراجع.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Wiley Funded by:AKA | The combined effect of cl...AKA| The combined effect of climate change and habitat protection on population changes and range shifts in birdsLehikoinen, Aleksi; Brotons, Lluís; Calladine, John; Campedelli, Tommaso; Escandell, Virginia; Flousek, Jiri; Grueneberg, Christoph; Haas, Fredrik; Harris, Sarah; Herrando, Sergi; Husby, Magne; Jiguet, Frederic; Kålås, John Atle; Lindström, Åke; Lorrilliere, Romain; Molina, Blas; Pladevall, Clara; Calvi, Gianpiero; Sattler, Thomas; Schmid, Hans; Sirkiä, Päivi; Teufelbauer, Norbert; Trautmann, Sven;AbstractMountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south‐western (Iberia) and south‐central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (−7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant −10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.
Global Change Biolog... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:The Royal Society Funded by:DFGDFGDamaris Zurell; Katrin Schifferle; Sergi Herrando; Verena Keller; Aleksi Lehikoinen; Thomas Sattler; Levin Wiedenroth;Species respond dynamically to climate change and exhibit time lags. Consequently, species may not occupy their full climatic niche during range shifting. Here, we assessed climate niche tracking during recent range shifts of European and United States (US) birds. Using data from two European bird atlases and from the North American Breeding Bird Survey between the 1980s and 2010s, we analysed range overlap and climate niche overlap based on kernel density estimation. Phylogenetic multiple regression was used to assess the effect of species morphological, ecological and biogeographic traits on range and niche metrics. European birds shifted their ranges north and north-eastwards, US birds westwards. Range unfilling was lower than expected by null models, and niche expansion was more common than niche unfilling. Also, climate niche tracking was generally lower in US birds and poorly explained by species traits. Overall, our results suggest that dispersal limitations were minor in range shifting birds in Europe and the USA while delayed extinctions from unfavourable areas seem more important. Regional differences could be related to differences in land use history and monitoring schemes. Comparative analyses of range and niche shifts provide a useful screening approach for identifying the importance of transient dynamics and time-lagged responses to climate change. This article is part of the theme issue ‘Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:Wiley Funded by:SNSF | FeedBaCks: Feedbacks betw..., SNSF | FutureWebSNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| FutureWebMattia Brambilla; Diego Rubolini; Ojan Appukuttan; Gianpiero Calvi; Dirk Nikolaus Karger; Primož Kmecl; Tomaž Mihelič; Thomas Sattler; Benjamin Seaman; Norbert Teufelbauer; Johannes Wahl; Claudio Celada;AbstractIdentifying climate refugia is key to effective biodiversity conservation under a changing climate, especially for mountain‐specialist species adapted to cold conditions and highly threatened by climate warming. We combined species distribution models (SDMs) with climate forecasts to identify climate refugia for high‐elevation bird species (Lagopus muta, Anthus spinoletta, Prunella collaris, Montifringilla nivalis) in the European Alps, where the ecological effects of climate changes are particularly evident and predicted to intensify. We considered future (2041–2070) conditions (SSP585 scenario, four climate models) and identified three types of refugia: (1) in‐situ refugia potentially suitable under both current and future climate conditions, ex‐situ refugia suitable (2) only in the future according to all future conditions, or (3) under at least three out of four future conditions. SDMs were based on a very large, high‐resolution occurrence dataset (2901–12,601 independent records for each species) collected by citizen scientists. SDMs were fitted using different algorithms, balancing statistical accuracy, ecological realism and predictive/extrapolation ability. We selected the most reliable ones based on consistency between training and testing data and extrapolation over distant areas. Future predictions revealed that all species (with the partial exception of A. spinoletta) will undergo a range contraction towards higher elevations, losing 17%–59% of their current range (larger losses in L. muta). We identified ~15,000 km2 of the Alpine region as in‐situ refugia for at least three species, of which 44% are currently designated as protected areas (PAs; 18%–66% among countries). Our findings highlight the usefulness of spatially accurate data collected by citizen scientists, and the importance of model testing by extrapolating over independent areas. Climate refugia, which are only partly included within the current PAs system, should be priority sites for the conservation of Alpine high‐elevation species and habitats, where habitat degradation/alteration by human activities should be prevented to ensure future suitability for alpine species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
