- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint 2020 United Kingdom, France, Austria, Netherlands, France, Belgium, FrancePublisher:Copernicus GmbH Funded by:EC | VERIFYEC| VERIFYFrédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Yuto Tashiro; Tetsuya Hiyama; Hironari Kanamori; Masayuki Kondo;AbstractPrimary production in the Sea of Okhotsk is largely supported by dissolved iron (dFe) transported by the Amur river, indicating the importance of dFe discharge from terrestrial environments. However, little is known about the mechanisms of dFe discharge into the Amur river, especially in terms of long-term change in dFe concentration. In the Amur river, extreme increase in dFe concentration was observed between 1995 and 1997, the cause of which remains unclear. As a cause of this iron anomaly, we considered the impact of permafrost degradation. To link the permafrost degradation to long-term variation in dFe concentration, we examined the changes in annual air temperature (Ta), accumulated temperature (AT), and net precipitation for three regions (northeast, south, and northwest) of the basin between 1960 and 2006. Ta and AT were relatively high in one out of every few years, and were especially high during 1988–1990 continuously. Net precipitation in late summer (July to September) has increased since 1977 and has stayed positive until 2006 throughout the basin. Most importantly, we found significant correlations between Ta and late summer dFe concentration with a 7-year lag (r = 0.54–0.69, p < 0.01), which indicate a close relationship between high Ta in year Y and increased late summer dFe concentration in year Y + 7. This correlation was the strongest in northeastern Amur basin where permafrost coverage is the highest. Similar 7-year lag correlation was also found between AT in the northeastern basin and late summer dFe concentration (r = 0.51, p < 0.01). Based on our findings, we propose the following hypothesis as a cause of iron anomaly. (1) Increased net precipitation since 1977 has increased soil moisture, which created suitable conditions for microbial dFe generation; (2) permafrost degradation during the warm years of 1988–1990 promoted iron bioavailability and led to the intensive dFe generation in the deeper part of the active layer; and (3) dFe took approximately 7 years to reach the rivers and extremely increased dFe concentration during 1995–1997. This is the first study to suggest the time-lagged impact of permafrost degradation on iron biogeochemistry in the Amur river basin.
Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-024-00619-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-024-00619-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United States, United Kingdom, Germany, FrancePublisher:Springer Science and Business Media LLC Frédéric Chevallier; Takashi Nakamura; J. G. Canadell; Albert van Dijk; Christian Rödenbeck; Andy Wiltshire; Nobuko Saigusa; Fang Li; Yosuke Niwa; Leonardo Calle; Thomas A. M. Pugh; Thomas A. M. Pugh; Takashi Maki; Atul K. Jain; A. Arneth; Tazu Saeki; Sönke Zaehle; Charles D. Koven; Prabir K. Patra; Etsushi Kato; Yi Y. Liu; Yi Y. Liu; Benjamin Poulter; Benjamin Poulter; Anna B. Harper; Stephen Sitch; Kazuhito Ichii; Kazuhito Ichii; Kazuhito Ichii; Masayuki Kondo; Masayuki Kondo; Pierre Friedlingstein;doi: 10.1038/s41467-018-03374-x , 10.5445/ir/1000082232 , 10.60692/a5dkk-jnv47 , 10.60692/4shrz-zqs39
pmid: 29559637
pmc: PMC5861034
handle: 10871/34424
doi: 10.1038/s41467-018-03374-x , 10.5445/ir/1000082232 , 10.60692/a5dkk-jnv47 , 10.60692/4shrz-zqs39
pmid: 29559637
pmc: PMC5861034
handle: 10871/34424
AbstractAn integrated understanding of the biogeochemical consequences of climate extremes and land use changes is needed to constrain land-surface feedbacks to atmospheric CO2 from associated climate change. Past assessments of the global carbon balance have shown particularly high uncertainty in Southeast Asia. Here, we use a combination of model ensembles to show that intensified land use change made Southeast Asia a strong source of CO2 from the 1980s to 1990s, whereas the region was close to carbon neutral in the 2000s due to an enhanced CO2 fertilization effect and absence of moderate-to-strong El Niño events. Our findings suggest that despite ongoing deforestation, CO2 emissions were substantially decreased during the 2000s, largely owing to milder climate that restores photosynthetic capacity and suppresses peat and deforestation fire emissions. The occurrence of strong El Niño events after 2009 suggests that the region has returned to conditions of increased vulnerability of carbon stocks.
Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29559637Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/7dr52384Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03374-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29559637Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/7dr52384Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03374-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Geophysical Union (AGU) Tin W. Satriawan; Xiangzhong Luo; Jiaqi Tian; Kazuhito Ichii; Liew Juneng; Masayuki Kondo;AbstractEl Niño/Southern Oscillation (ENSO) is the main climate mode that drives the interannual variability in climate and consequently vegetation greenness. While widespread green‐up has been reported and examined in tropical America during El Niño, it remains unclear how vegetation in tropical Asia changes during the period. Here, we used four remote sensing‐based leaf area index (LAI) products to investigate changes in vegetation greenness during the 2015/16 El Niño in tropical Asia. We found a strong green‐up during the 2015/16 El Niño in tropical Asia, with its regional average LAI stronger than that of tropical America. The drivers for the green‐up vary across the region, with radiation being the main driver for continental tropical Asia, and temperature and soil water anomalies in the west and east parts of maritime tropical Asia, respectively. These findings provide important insights into the response of tropical Asia's vegetation to extreme climate anomalies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint 2020 United Kingdom, France, Austria, Netherlands, France, Belgium, FrancePublisher:Copernicus GmbH Funded by:EC | VERIFYEC| VERIFYFrédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Yuto Tashiro; Tetsuya Hiyama; Hironari Kanamori; Masayuki Kondo;AbstractPrimary production in the Sea of Okhotsk is largely supported by dissolved iron (dFe) transported by the Amur river, indicating the importance of dFe discharge from terrestrial environments. However, little is known about the mechanisms of dFe discharge into the Amur river, especially in terms of long-term change in dFe concentration. In the Amur river, extreme increase in dFe concentration was observed between 1995 and 1997, the cause of which remains unclear. As a cause of this iron anomaly, we considered the impact of permafrost degradation. To link the permafrost degradation to long-term variation in dFe concentration, we examined the changes in annual air temperature (Ta), accumulated temperature (AT), and net precipitation for three regions (northeast, south, and northwest) of the basin between 1960 and 2006. Ta and AT were relatively high in one out of every few years, and were especially high during 1988–1990 continuously. Net precipitation in late summer (July to September) has increased since 1977 and has stayed positive until 2006 throughout the basin. Most importantly, we found significant correlations between Ta and late summer dFe concentration with a 7-year lag (r = 0.54–0.69, p < 0.01), which indicate a close relationship between high Ta in year Y and increased late summer dFe concentration in year Y + 7. This correlation was the strongest in northeastern Amur basin where permafrost coverage is the highest. Similar 7-year lag correlation was also found between AT in the northeastern basin and late summer dFe concentration (r = 0.51, p < 0.01). Based on our findings, we propose the following hypothesis as a cause of iron anomaly. (1) Increased net precipitation since 1977 has increased soil moisture, which created suitable conditions for microbial dFe generation; (2) permafrost degradation during the warm years of 1988–1990 promoted iron bioavailability and led to the intensive dFe generation in the deeper part of the active layer; and (3) dFe took approximately 7 years to reach the rivers and extremely increased dFe concentration during 1995–1997. This is the first study to suggest the time-lagged impact of permafrost degradation on iron biogeochemistry in the Amur river basin.
Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-024-00619-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-024-00619-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United States, United Kingdom, Germany, FrancePublisher:Springer Science and Business Media LLC Frédéric Chevallier; Takashi Nakamura; J. G. Canadell; Albert van Dijk; Christian Rödenbeck; Andy Wiltshire; Nobuko Saigusa; Fang Li; Yosuke Niwa; Leonardo Calle; Thomas A. M. Pugh; Thomas A. M. Pugh; Takashi Maki; Atul K. Jain; A. Arneth; Tazu Saeki; Sönke Zaehle; Charles D. Koven; Prabir K. Patra; Etsushi Kato; Yi Y. Liu; Yi Y. Liu; Benjamin Poulter; Benjamin Poulter; Anna B. Harper; Stephen Sitch; Kazuhito Ichii; Kazuhito Ichii; Kazuhito Ichii; Masayuki Kondo; Masayuki Kondo; Pierre Friedlingstein;doi: 10.1038/s41467-018-03374-x , 10.5445/ir/1000082232 , 10.60692/a5dkk-jnv47 , 10.60692/4shrz-zqs39
pmid: 29559637
pmc: PMC5861034
handle: 10871/34424
doi: 10.1038/s41467-018-03374-x , 10.5445/ir/1000082232 , 10.60692/a5dkk-jnv47 , 10.60692/4shrz-zqs39
pmid: 29559637
pmc: PMC5861034
handle: 10871/34424
AbstractAn integrated understanding of the biogeochemical consequences of climate extremes and land use changes is needed to constrain land-surface feedbacks to atmospheric CO2 from associated climate change. Past assessments of the global carbon balance have shown particularly high uncertainty in Southeast Asia. Here, we use a combination of model ensembles to show that intensified land use change made Southeast Asia a strong source of CO2 from the 1980s to 1990s, whereas the region was close to carbon neutral in the 2000s due to an enhanced CO2 fertilization effect and absence of moderate-to-strong El Niño events. Our findings suggest that despite ongoing deforestation, CO2 emissions were substantially decreased during the 2000s, largely owing to milder climate that restores photosynthetic capacity and suppresses peat and deforestation fire emissions. The occurrence of strong El Niño events after 2009 suggests that the region has returned to conditions of increased vulnerability of carbon stocks.
Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29559637Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/7dr52384Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03374-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29559637Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/7dr52384Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806789Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03374-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Geophysical Union (AGU) Tin W. Satriawan; Xiangzhong Luo; Jiaqi Tian; Kazuhito Ichii; Liew Juneng; Masayuki Kondo;AbstractEl Niño/Southern Oscillation (ENSO) is the main climate mode that drives the interannual variability in climate and consequently vegetation greenness. While widespread green‐up has been reported and examined in tropical America during El Niño, it remains unclear how vegetation in tropical Asia changes during the period. Here, we used four remote sensing‐based leaf area index (LAI) products to investigate changes in vegetation greenness during the 2015/16 El Niño in tropical Asia. We found a strong green‐up during the 2015/16 El Niño in tropical Asia, with its regional average LAI stronger than that of tropical America. The drivers for the green‐up vary across the region, with radiation being the main driver for continental tropical Asia, and temperature and soil water anomalies in the west and east parts of maritime tropical Asia, respectively. These findings provide important insights into the response of tropical Asia's vegetation to extreme climate anomalies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu