Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lorenzo Angeletti; Annaëlle Bargain; Marco Taviani; Marco Taviani; +6 Authors

    Madrepora oculata and Lophelia pertusa are the two main ecosystem engineering, scleractinian cold-water corals (CWC) found in Mediterranean canyons. Factors controlling CWC distribution in the Mediterranean Sea are not yet fully understood in spite of such ecosystems being recognized as sensitive habitats by the General Fisheries Commission for the Mediterranean. As they are threatened by fishery activity, they are subject to management and protection measures. In order to contribute towards identifying the major drivers governing CWC distribution at local scale, which is a prerequisite for proper management, we focused our attention on two canyons: (1) the Cassidaigne canyon, located in the eastern part of the Gulf of Lion, in which CWC ecosystems have settled in an upwelling environment and form large colonies, and (2) the Bari Canyon System, in the southwestern Adriatic, a site of coral growth that has been hypothesized to respond to hydrographic processes, including the cascading of North Adriatic Dense Water. The objective of our study was to combine several ecological variables to describe the environmental conditions in favor of CWC settlement and growth: (1) CWC observations, extracted from geo-referenced underwater videos, (2) seafloor characteristics derived from high-resolution bathymetry, (3) data on local hydrodynamic conditions (from high resolution hydrodynamic models). Habitat suitability models were used to identify the main variables driving CWC distribution. Models based on presence-only data (Maxent and ENFA) and on presence-absence data (GLMs) were fitted and compared. Seafloor ruggedness was identified to be the major factor driving CWC distribution in both canyons with the three methods. Two hydrodynamic variables (mean temperature and current velocity) were the second most important predictors for explaining CWC settlement and growth. Suitable areas for CWC habitat occurrence were mapped for both canyons. Spatial distributions were generally predicted at the same locations, although the GLM gave less realistic results in the Bari canyon system probably due to the limited range cover of the entire environmental conditions by the absence points, suggesting that the Maxent and ENFA models were more efficient. These theoretical distributions will help in the assessment of potential habitat extent in the deep-sea and also in the scheme of the Marine Strategy Framework Directive (MSFD).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2018
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress In Oceanography
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2018
    Data sources: IRIS Cnr
    HAL Descartes
    Article . 2018
    Data sources: HAL Descartes
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2018
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress In Oceanography
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2018
      Data sources: IRIS Cnr
      HAL Descartes
      Article . 2018
      Data sources: HAL Descartes
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lorenzo Angeletti; Annaëlle Bargain; Marco Taviani; Marco Taviani; +6 Authors

    Madrepora oculata and Lophelia pertusa are the two main ecosystem engineering, scleractinian cold-water corals (CWC) found in Mediterranean canyons. Factors controlling CWC distribution in the Mediterranean Sea are not yet fully understood in spite of such ecosystems being recognized as sensitive habitats by the General Fisheries Commission for the Mediterranean. As they are threatened by fishery activity, they are subject to management and protection measures. In order to contribute towards identifying the major drivers governing CWC distribution at local scale, which is a prerequisite for proper management, we focused our attention on two canyons: (1) the Cassidaigne canyon, located in the eastern part of the Gulf of Lion, in which CWC ecosystems have settled in an upwelling environment and form large colonies, and (2) the Bari Canyon System, in the southwestern Adriatic, a site of coral growth that has been hypothesized to respond to hydrographic processes, including the cascading of North Adriatic Dense Water. The objective of our study was to combine several ecological variables to describe the environmental conditions in favor of CWC settlement and growth: (1) CWC observations, extracted from geo-referenced underwater videos, (2) seafloor characteristics derived from high-resolution bathymetry, (3) data on local hydrodynamic conditions (from high resolution hydrodynamic models). Habitat suitability models were used to identify the main variables driving CWC distribution. Models based on presence-only data (Maxent and ENFA) and on presence-absence data (GLMs) were fitted and compared. Seafloor ruggedness was identified to be the major factor driving CWC distribution in both canyons with the three methods. Two hydrodynamic variables (mean temperature and current velocity) were the second most important predictors for explaining CWC settlement and growth. Suitable areas for CWC habitat occurrence were mapped for both canyons. Spatial distributions were generally predicted at the same locations, although the GLM gave less realistic results in the Bari canyon system probably due to the limited range cover of the entire environmental conditions by the absence points, suggesting that the Maxent and ENFA models were more efficient. These theoretical distributions will help in the assessment of potential habitat extent in the deep-sea and also in the scheme of the Marine Strategy Framework Directive (MSFD).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2018
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress In Oceanography
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2018
    Data sources: IRIS Cnr
    HAL Descartes
    Article . 2018
    Data sources: HAL Descartes
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2018
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress In Oceanography
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2018
      Data sources: IRIS Cnr
      HAL Descartes
      Article . 2018
      Data sources: HAL Descartes
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph