- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Language
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Xiang Li; Peiyuan Gao; Yun-Yu Lai; J. David Bazak; Aaron Hollas; Heng-Yi Lin; Vijayakumar Murugesan; Shuyuan Zhang; Chung-Fu Cheng; Wei-Yao Tung; Yueh-Ting Lai; Ruozhu Feng; Jin Wang; Chien-Lung Wang; Wei Wang; Yu Zhu;The limited availability of a high-performance catholyte has hindered the development of aqueous organic redox flow batteries (AORFB) for large-scale energy storage. Here we report a symmetry-breaking design of iron complexes with 2,2′-bipyridine-4,4′-dicarboxylic (Dcbpy) acid and cyanide ligands. By introducing two ligands to the metal centre, the complex compounds (M4[FeII(Dcbpy)2(CN)2], M = Na, K) exhibited up to a 4.2 times higher solubility (1.22 M) than that of M4[FeII(Dcbpy)3] and a 50% increase in potential compared with that of ferrocyanide. The AORFBs with 0.1 M Na4[FeII(Dcbpy)2(CN)2] as the catholyte were demonstrated for 6,000 cycles with a capacity fading rate of 0.00158% per cycle (0.217% per day). Even at a concentration near the solubility limit (1 M Na4[FeII(Dcbpy)2(CN)2]), the flow battery exhibited a capacity fading rate of 0.008% per cycle (0.25% per day) in the first 400 cycles. The AORFB cell with a nearly 1:1 catholyte:anolyte electron ratio achieved a cell voltage of 1.2 V and an energy density of 12.5 Wh l–1. The development of aqueous organic redox flow batteries suffers from the limited availability of high-performance catholytes. Here the authors design a metal organic complex catholyte material with a tunable redox potential, which offers promise for high-energy long-lasting flow batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Glenn R. Pastel; Ying Chen; Travis P. Pollard; Marshall A. Schroeder; Mark E. Bowden; Allen Zheng; Nathan T. Hahn; Lin Ma; Vijayakumar Murugesan; Janet Ho; Mounesha Garaga; Oleg Borodin; Karl Mueller; Steven Greenbaum; Kang Xu;doi: 10.1039/d2ee00134a
An in-depth investigation of the solvation structure of the trivalent aluminum cation in Al(OTf)3 solutions reveals major concerns regarding the feasibility of rechargeable aqueous aluminum batteries.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Hyung-Seok Lim; Sujong Chae; Litao Yan; Guosheng Li; Ruozhu Feng; Yongsoon Shin; Zimin Nie; Bhuvaneswari Modachur Sivakumar; Xin Zhang; Yangang Liang; David Jonathan Bazak; Vaithiyalingam Shutthanandan; Vijayakumar Murugesan; Soowhan Kim; Wei Wang;Redox flow batteries are considered a promising technology for grid energy storage. However, capacity decay caused by crossover of active materials is a universal challenge for many flow battery systems, which are based on various chemistries. In this paper, using the vanadium redox flow battery as an example, we demonstrate a new gel polymer interface (GPI) consisting of crosslinked polyethyleneimine with a large amount of amino and carboxylic acid groups introduced between the positive electrode and the membrane. The GPI functions as a key component to prevent vanadium ions from crossing the membrane, thus supporting stable long-term cycling. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were conducted to investigate the effect of GPI on the electrochemical properties of graphitic carbon electrodes (GCFs) and redox reaction of catholyte. X-ray photoelectron spectroscopy (XPS) and 1 H nuclear magnetic resonance (NMR) spectra demonstrated that the crosslinked GPI is chemically stable for 100 cycles without dissolution of polymers and swelling in the strong acidic electrolytes. Results from inductively coupled plasma mass spectrometry (ICP-MS), Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy proved that the GPI is effective in maintaining the concentration of vanadium species in their respective half-cells, resulting in improved cycling stability because of it prevents active species from crossing the membrane and stabilizes the oxidation states of active species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2012Publisher:Elsevier BV Birgit Schwenzer; Zhenguo Yang; Suntharampillai Thevuthasan; Jian Z. Hu; Gordon L. Graff; Jun Liu; Murugesan Vijayakumar; Soowhan Kim;pmid: 22192576
Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries.
Solid State Nuclear ... arrow_drop_down Solid State Nuclear Magnetic ResonanceArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solid State Nuclear ... arrow_drop_down Solid State Nuclear Magnetic ResonanceArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2011Publisher:Royal Society of Chemistry (RSC) M.S. Bhuvaneswari; Zhenguo Yang; John S. Hardy; Wei Wang; Gordon L. Graff; Ji Guang Zhang; Daiwon Choi; Jie Xiao; Jun Liu; Wu Xu; Murugesan Vijayakumar; Young Joon Choi;doi: 10.1039/c1ee01501j
Electrochemically active LiMnPO4 nanoplates at lithiated/delithiated state were subjected to thermal stability and phase transformation evaluations for safety as a cathode material for Li-ion batteries. The phase transformation and oxygen evolution temperature of delithiated MnPO4 were characterized using in situ hot-stage X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential scanning calorimetry-mass spectroscopy (TGA-DSC-MS), transmission electron microscopy and scanning electron microscopy (SEM)-energy dispersive X-ray analysis (EDAX).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Xiang Li; Peiyuan Gao; Yun-Yu Lai; J. David Bazak; Aaron Hollas; Heng-Yi Lin; Vijayakumar Murugesan; Shuyuan Zhang; Chung-Fu Cheng; Wei-Yao Tung; Yueh-Ting Lai; Ruozhu Feng; Jin Wang; Chien-Lung Wang; Wei Wang; Yu Zhu;The limited availability of a high-performance catholyte has hindered the development of aqueous organic redox flow batteries (AORFB) for large-scale energy storage. Here we report a symmetry-breaking design of iron complexes with 2,2′-bipyridine-4,4′-dicarboxylic (Dcbpy) acid and cyanide ligands. By introducing two ligands to the metal centre, the complex compounds (M4[FeII(Dcbpy)2(CN)2], M = Na, K) exhibited up to a 4.2 times higher solubility (1.22 M) than that of M4[FeII(Dcbpy)3] and a 50% increase in potential compared with that of ferrocyanide. The AORFBs with 0.1 M Na4[FeII(Dcbpy)2(CN)2] as the catholyte were demonstrated for 6,000 cycles with a capacity fading rate of 0.00158% per cycle (0.217% per day). Even at a concentration near the solubility limit (1 M Na4[FeII(Dcbpy)2(CN)2]), the flow battery exhibited a capacity fading rate of 0.008% per cycle (0.25% per day) in the first 400 cycles. The AORFB cell with a nearly 1:1 catholyte:anolyte electron ratio achieved a cell voltage of 1.2 V and an energy density of 12.5 Wh l–1. The development of aqueous organic redox flow batteries suffers from the limited availability of high-performance catholytes. Here the authors design a metal organic complex catholyte material with a tunable redox potential, which offers promise for high-energy long-lasting flow batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Glenn R. Pastel; Ying Chen; Travis P. Pollard; Marshall A. Schroeder; Mark E. Bowden; Allen Zheng; Nathan T. Hahn; Lin Ma; Vijayakumar Murugesan; Janet Ho; Mounesha Garaga; Oleg Borodin; Karl Mueller; Steven Greenbaum; Kang Xu;doi: 10.1039/d2ee00134a
An in-depth investigation of the solvation structure of the trivalent aluminum cation in Al(OTf)3 solutions reveals major concerns regarding the feasibility of rechargeable aqueous aluminum batteries.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Hyung-Seok Lim; Sujong Chae; Litao Yan; Guosheng Li; Ruozhu Feng; Yongsoon Shin; Zimin Nie; Bhuvaneswari Modachur Sivakumar; Xin Zhang; Yangang Liang; David Jonathan Bazak; Vaithiyalingam Shutthanandan; Vijayakumar Murugesan; Soowhan Kim; Wei Wang;Redox flow batteries are considered a promising technology for grid energy storage. However, capacity decay caused by crossover of active materials is a universal challenge for many flow battery systems, which are based on various chemistries. In this paper, using the vanadium redox flow battery as an example, we demonstrate a new gel polymer interface (GPI) consisting of crosslinked polyethyleneimine with a large amount of amino and carboxylic acid groups introduced between the positive electrode and the membrane. The GPI functions as a key component to prevent vanadium ions from crossing the membrane, thus supporting stable long-term cycling. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were conducted to investigate the effect of GPI on the electrochemical properties of graphitic carbon electrodes (GCFs) and redox reaction of catholyte. X-ray photoelectron spectroscopy (XPS) and 1 H nuclear magnetic resonance (NMR) spectra demonstrated that the crosslinked GPI is chemically stable for 100 cycles without dissolution of polymers and swelling in the strong acidic electrolytes. Results from inductively coupled plasma mass spectrometry (ICP-MS), Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy proved that the GPI is effective in maintaining the concentration of vanadium species in their respective half-cells, resulting in improved cycling stability because of it prevents active species from crossing the membrane and stabilizes the oxidation states of active species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2012Publisher:Elsevier BV Birgit Schwenzer; Zhenguo Yang; Suntharampillai Thevuthasan; Jian Z. Hu; Gordon L. Graff; Jun Liu; Murugesan Vijayakumar; Soowhan Kim;pmid: 22192576
Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries.
Solid State Nuclear ... arrow_drop_down Solid State Nuclear Magnetic ResonanceArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solid State Nuclear ... arrow_drop_down Solid State Nuclear Magnetic ResonanceArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2011Publisher:Royal Society of Chemistry (RSC) M.S. Bhuvaneswari; Zhenguo Yang; John S. Hardy; Wei Wang; Gordon L. Graff; Ji Guang Zhang; Daiwon Choi; Jie Xiao; Jun Liu; Wu Xu; Murugesan Vijayakumar; Young Joon Choi;doi: 10.1039/c1ee01501j
Electrochemically active LiMnPO4 nanoplates at lithiated/delithiated state were subjected to thermal stability and phase transformation evaluations for safety as a cathode material for Li-ion batteries. The phase transformation and oxygen evolution temperature of delithiated MnPO4 were characterized using in situ hot-stage X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential scanning calorimetry-mass spectroscopy (TGA-DSC-MS), transmission electron microscopy and scanning electron microscopy (SEM)-energy dispersive X-ray analysis (EDAX).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
