Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
18 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhiyuan Cong; Zhiyuan Cong; Pingqing Fu; Mark Loewen; +8 Authors

    Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qiang Zhang; Zewei Fan; Shaofei Kong; Shurui Zheng; +16 Authors

    Accurate source markers, source profiles and species-based emission factors (EFs) are currently the key limitations for source apportionment and emission inventory researches. Fine particles (PM2.5) were collected from stack gases of eight types of stationary sources with a dilution sampling system. The mass percentages and EFs of 89 kinds of chemical species in PM2.5 including water-soluble ions, elements, carbonaceous species and molecular organic species were obtained. Results showed that water-soluble ions (8%-54%) and elements (5%-45%) were the dominant chemical species. Palmitic acid (0.19%-0.62%) and stearic acid (0.21%-0.59%) were the most abundant organic species. PM2.5 source profiles of the eight sources were different from each other with the coefficient of divergence values all higher than 0.4. The addition of organic species could help to further distinguish them. The indicatory chemical components and specific species ratios were obtained by both a statistical equation and randomForest. These indicatory chemical components (e.g. F- for glass factory) and species ratios (e.g. K+/Mg2+ & OC/Mg for pharmaceutical factory) improved the current knowledges of their indicatory performance in source identification of ambient PM2.5. The EFs of PM2.5 from the eight stationary sources ranged from 0.019 to 51.6 kg t-1 of fuel used. The EFs of PM2.5 from the pharmaceutical factory were about 70-2600 times higher than other seven types of sources due to the lack of dust-removing devices. Certain EFs measured in this study were about 10-36,000 times lower than corresponding EFs estimated in previous studies which didn't perform field measurements, indicating the necessity for improving emission inventories continuously. This study contributes to identifying emission sources of PM2.5 especially for subtypes of stationary sources and to establishing species-based emission inventories.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Takayuki Shiraiwa; Pingqing Fu; Pingqing Fu; Ambarish Pokhrel; +4 Authors

    Abstract Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with α-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C 18:1 ) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C 5 -alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis -2-methyl 1,3,4-trihydroxy-1-butene and trans -2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with α-dicarbonyls and fatty acids (e.g., C 18:1 ) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hokkaido University ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Atmospheric Environment
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Environment
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hokkaido University ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Atmospheric Environment
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Environment
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ye Zhao; Pingqing Fu; Pingqing Fu; Shankar G. Aggarwal; +4 Authors

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C19C33), n-fatty acids (C12C30) and n-alcohols (C16C32) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhao, Yan; Zhang, Yingyi; Fu, Pingqing; Ho, Steven Sai Hang; +5 Authors

    Filter samples of total suspended particle (TSP) collected during a cruise campaign over the northern South China Sea (SCS) from September to October 2013 were analyzed for non-polar organic compounds (NPOCs) as well as organic carbon (OC), elemental carbon (EC) and water-soluble ions. A total of 115 NPOCs species in groups of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), iso-/antiso-alkanes, hopanes, steranes, methylalkanes, branched alkanes, cycloalkanes, alkenes and phthalates were detected. The characteristics of NPOCs in marine TSP samples were investigated to understand the sources from the Asian continent and other regions. The concentrations of total NPOCs ranged from 19.8 to 288.2 ng/m(3) with an average of 87.9 ng/m(3), which accounted for 0.8-1.7% (average 1.0%) of organic matter (OM). n-Alkanes was the predominant group, accounting for 43.1-79.5%, followed by PAHs (5.5-44.4%) and hopanes (1.6-11.4%). We found that primary combustion (biomass burning/fossil fuel combustion) was the dominant source for the majority of NPOCs (89.1%). Biomass burning in southern/southeastern China via long-range transport was proposed to be a major contributor of NPOCs in marine aerosols over the northern SCS, suggested by the significant correlations between nss-K(+) and NPOCs groups as well as the analysis of air mass back-trajectory and fire spots. For the samples with strong continental influence, the strong enhancement in concentrations of n-alkanes, PAHs, hopanes and steranes were attributed to fossil fuel (coal/petroleum) combustion. In addition, terrestrial plants waxes were another contributor to NPOCs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Junwei Song; Yan Zhao; Yingyi Zhang; Pingqing Fu; +8 Authors

    Total suspended particle (TSP) samples were collected during a cruise campaign over the western South China Sea (SCS) from August to September 2014. Ten water-soluble ions (WSI), organic carbon (OC), elemental carbon (EC) and stable carbon isotope ratios of total carbon (δ13CTC) were measured. The average concentrations of total WSI, OC and EC were 7.91 ± 3.44 μg/m3, 2.04 ± 1.25 μg/m3 and 0.30 ± 0.22 μg/m3, respectively. Among the investigated WSI, sulfate (SO42-), sodium (Na+) and chloride (Cl-) were the most abundant species, accounting for 39.2%, 24.5% and 14.3% of the total mass of the WSI, respectively. Significantly positive correlations of OC and EC with non-sea-salt potassium (nss-K+), a tracer for biomass burning, suggest that biomass burning is the major source of carbonaceous aerosols. The values of δ13CTC ranged from -26.6‰ to -24.4‰ with an average of -25.3 ± 0.7‰. Based on the literature data of δ13CTC, back-trajectory analysis and satellite fire spots, we propose that C3 plant burning in Southeast Asia significantly contributes to carbonaceous aerosols over the western SCS. This is also supported by a good correlation between δ13CTC and the mass ratios of nss-K+/TC. Furthermore, high Cl- depletion (73 ± 23%) was observed in the aerosols over the western SCS. Given the neutralization of SO42- by ammonium (NH4+), excess nss-SO42- and oxalate (C2O42-) made major contributions to Cl- depletion in the samples strongly influenced by biomass burning. This study provides useful information to better understand the influence of biomass burning on atmospheric aerosols over the SCS.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaoyang Yang; Senchao Lai; Zifa Wang; Siyao Yue; +8 Authors

    Fine particles (PM2.5) samples, collected at Weizhou Island over the Gulf of Tonkin on a daytime and nighttime basis in the spring of 2015, were analyzed for primary and secondary organic tracers, together with organic carbon (OC), elemental carbon (EC), and stable carbon isotopic composition (δ13C) of total carbon (TC). Five organic compound classes, including saccharides, lignin/resin products, fatty acids, biogenic SOA tracers and phthalic acids, were quantified by gas chromatography/mass spectrometry (GC/MS). Levoglucosan was the most abundant organic species, indicating that the sampling site was under strong influence of biomass burning. Based on the tracer-based methods, the biomass-burning-derived fraction was estimated to be the dominant contributor to aerosol OC, accounting for 15.7% ± 11.1% and 22.2% ± 17.4% of OC in daytime and nighttime samples, respectively. In two episodes E1 and E2, organic aerosols characterized by elevated concentrations of levoglucosan as well as its isomers, sugar compounds, lignin products, high molecular weight (HMW) fatty acids and β-caryophyllinic acid, were attributed to the influence of intensive biomass burning in the northern Southeast Asia (SEA). However, the discrepancies in the ratios of levoglucosan to mannosan (L/M) and OC (L/OC) as well as the δ13C values suggest the type of biomass burning and the sources of organic aerosols in E1 and E2 were different. Hardwood and/or C4 plants were the major burning materials in E1, while burning of softwood and/or C3 plants played important role in E2. Furthermore, more complex sources and enhanced secondary contribution were found to play a part in organic aerosols in E2. This study highlights the significant influence of springtime biomass burning in the northern SEA to the organic molecular compositions of marine aerosols over the Gulf of Tonkin.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pingqing Fu; Leonard A. Barrie; Kimitaka Kawamura;

    Total suspended particles collected at Alert in the Canadian high Arctic (February-June) were analyzed for solvent extractable organic compounds using gas chromatography-mass spectrometry to better understand the sources and source apportionment of aerosol pollution that can affect the Arctic climate. More than 100 organic species were detected in the aerosols and were grouped into different compound classes based on the functional groups. Polyacids were found to be the most abundant compound class, followed by phthalates, aromatic acids, fatty acids, fatty alcohols, sugars/sugar alcohols, and n-alkanes, while polycyclic aromatic hydrocarbons, sterols, and lignin and resin acids were minor. Concentrations of total quantified organics seemed slightly higher in darkwinter aerosols (13.2-16.6 ng m(-3), average 14.5 ng m(-3)) than those after polar sunrise (6.70-17.7 ng m(-3), average 11.8 ng m(-3)). During dark winter, fossil fuel combustion products (30-51%), secondary oxidation products, as well as higher plant emissions were found as major contributors to the Arctic aerosols. However, after polar sunrise on 5 March, secondary oxidation products (5-53%) and plasticizer-derived phthalates became the dominant compound classes, followed by fossil fuel combustion and microbial/marine sources. Biomass burning emissions were found to contribute only 0.4-6% of the total identified organics, although they maximized in dark winter. This study demonstrates that long-range atmospheric transport, changes in the solar irradiance, and ambient temperature can significantly control the chemical composition of organic aerosols in the Arctic region.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jian Wu; Shaofei Kong; Xin Zeng; Yi Cheng; +9 Authors

    Levoglucosan (LG) emitted from non-biomass burning (non-BB) sources has given rise to biased or even unreasonable source identification results when adopting LG as a distinct marker of biomass burning (BB). The estimation of LG emission and its spatiotemporal variation for various sources are the keys to reducing uncertainty. This study first developed a LG emission inventory for China from 25 sub-type sources belonging to eight categories, with a 3 km × 3 km spatial resolution and monthly distribution. The total LG emission in 2014 was 145.7 Gg. Domestic BB and open BB contributed 39.2 and 34.3% of the total emission. Non-BB sources, including municipal solid waste burning (9.7%), firework burning (9.6%), meat cooking (5.4%), domestic coal burning (1.5%), ritual item burning (0.2%), and industrial coal burning (0.1%), contributed to 26.5% of the total emission. LG emission varied spatially and temporally. Non-BB sources have a significant spatiotemporal impact on BB source contributions, even in high BB emission regions or in sowing, harvesting, and winter heating seasons. The local BB contributions have been substantially overestimated by 4.28-369% in previous studies, wherein LG was solely referred to as the BB source. By 2018, LG emission from BB might decrease to 63.9% of its total emission. This high-resolution LG emission inventory can be greatly useful for source identification studies in China. It also supports future research on the modeling of smoke aging and pollution control.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2021 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2021 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhenzhong Zeng; Xu Feng; Xu Feng; Lijuan Zhang; +14 Authors

    Levoglucosan has been widely used to quantitatively assess biomass burning's contribution to ambient aerosols, but previous such assessments have not accounted for levoglucosan's degradation in the atmosphere. We develop the first global simulation of atmospheric levoglucosan, explicitly accounting for its chemical degradation, to evaluate the impacts on levoglucosan's use in quantitative aerosol source apportionment. Levoglucosan is emitted into the atmosphere from the burning of plant matter in open fires (1.7 Tg yr-1) and as biofuels (2.1 Tg yr-1). Sinks of atmospheric levoglucosan include aqueous-phase oxidation (2.9 Tg yr-1), heterogeneous oxidation (0.16 Tg yr-1), gas-phase oxidation (1.4 × 10-4 Tg yr-1), and dry and wet deposition (0.27 and 0.43 Tg yr -1). The global atmospheric burden of levoglucosan is 19 Gg with a lifetime of 1.8 days. Observations show a sharp decline in levoglucosan's concentrations and its relative abundance to organic carbon aerosol (OC) and particulate K+ from near-source to remote sites. We show that such features can only be reproduced when levoglucosan's chemical degradation is included in the model. Using model results, we develop statistical parametrizations to account for the atmospheric degradation in levoglucosan measurements, improving their use for quantitative aerosol source apportionment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science & Technology
    Article . 2021 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science & Technology
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
18 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhiyuan Cong; Zhiyuan Cong; Pingqing Fu; Mark Loewen; +8 Authors

    Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qiang Zhang; Zewei Fan; Shaofei Kong; Shurui Zheng; +16 Authors

    Accurate source markers, source profiles and species-based emission factors (EFs) are currently the key limitations for source apportionment and emission inventory researches. Fine particles (PM2.5) were collected from stack gases of eight types of stationary sources with a dilution sampling system. The mass percentages and EFs of 89 kinds of chemical species in PM2.5 including water-soluble ions, elements, carbonaceous species and molecular organic species were obtained. Results showed that water-soluble ions (8%-54%) and elements (5%-45%) were the dominant chemical species. Palmitic acid (0.19%-0.62%) and stearic acid (0.21%-0.59%) were the most abundant organic species. PM2.5 source profiles of the eight sources were different from each other with the coefficient of divergence values all higher than 0.4. The addition of organic species could help to further distinguish them. The indicatory chemical components and specific species ratios were obtained by both a statistical equation and randomForest. These indicatory chemical components (e.g. F- for glass factory) and species ratios (e.g. K+/Mg2+ & OC/Mg for pharmaceutical factory) improved the current knowledges of their indicatory performance in source identification of ambient PM2.5. The EFs of PM2.5 from the eight stationary sources ranged from 0.019 to 51.6 kg t-1 of fuel used. The EFs of PM2.5 from the pharmaceutical factory were about 70-2600 times higher than other seven types of sources due to the lack of dust-removing devices. Certain EFs measured in this study were about 10-36,000 times lower than corresponding EFs estimated in previous studies which didn't perform field measurements, indicating the necessity for improving emission inventories continuously. This study contributes to identifying emission sources of PM2.5 especially for subtypes of stationary sources and to establishing species-based emission inventories.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Takayuki Shiraiwa; Pingqing Fu; Pingqing Fu; Ambarish Pokhrel; +4 Authors

    Abstract Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with α-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C 18:1 ) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C 5 -alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis -2-methyl 1,3,4-trihydroxy-1-butene and trans -2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with α-dicarbonyls and fatty acids (e.g., C 18:1 ) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hokkaido University ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Atmospheric Environment
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Environment
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hokkaido University ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Atmospheric Environment
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Environment
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ye Zhao; Pingqing Fu; Pingqing Fu; Shankar G. Aggarwal; +4 Authors

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C19C33), n-fatty acids (C12C30) and n-alcohols (C16C32) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhao, Yan; Zhang, Yingyi; Fu, Pingqing; Ho, Steven Sai Hang; +5 Authors

    Filter samples of total suspended particle (TSP) collected during a cruise campaign over the northern South China Sea (SCS) from September to October 2013 were analyzed for non-polar organic compounds (NPOCs) as well as organic carbon (OC), elemental carbon (EC) and water-soluble ions. A total of 115 NPOCs species in groups of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), iso-/antiso-alkanes, hopanes, steranes, methylalkanes, branched alkanes, cycloalkanes, alkenes and phthalates were detected. The characteristics of NPOCs in marine TSP samples were investigated to understand the sources from the Asian continent and other regions. The concentrations of total NPOCs ranged from 19.8 to 288.2 ng/m(3) with an average of 87.9 ng/m(3), which accounted for 0.8-1.7% (average 1.0%) of organic matter (OM). n-Alkanes was the predominant group, accounting for 43.1-79.5%, followed by PAHs (5.5-44.4%) and hopanes (1.6-11.4%). We found that primary combustion (biomass burning/fossil fuel combustion) was the dominant source for the majority of NPOCs (89.1%). Biomass burning in southern/southeastern China via long-range transport was proposed to be a major contributor of NPOCs in marine aerosols over the northern SCS, suggested by the significant correlations between nss-K(+) and NPOCs groups as well as the analysis of air mass back-trajectory and fire spots. For the samples with strong continental influence, the strong enhancement in concentrations of n-alkanes, PAHs, hopanes and steranes were attributed to fossil fuel (coal/petroleum) combustion. In addition, terrestrial plants waxes were another contributor to NPOCs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Junwei Song; Yan Zhao; Yingyi Zhang; Pingqing Fu; +8 Authors

    Total suspended particle (TSP) samples were collected during a cruise campaign over the western South China Sea (SCS) from August to September 2014. Ten water-soluble ions (WSI), organic carbon (OC), elemental carbon (EC) and stable carbon isotope ratios of total carbon (δ13CTC) were measured. The average concentrations of total WSI, OC and EC were 7.91 ± 3.44 μg/m3, 2.04 ± 1.25 μg/m3 and 0.30 ± 0.22 μg/m3, respectively. Among the investigated WSI, sulfate (SO42-), sodium (Na+) and chloride (Cl-) were the most abundant species, accounting for 39.2%, 24.5% and 14.3% of the total mass of the WSI, respectively. Significantly positive correlations of OC and EC with non-sea-salt potassium (nss-K+), a tracer for biomass burning, suggest that biomass burning is the major source of carbonaceous aerosols. The values of δ13CTC ranged from -26.6‰ to -24.4‰ with an average of -25.3 ± 0.7‰. Based on the literature data of δ13CTC, back-trajectory analysis and satellite fire spots, we propose that C3 plant burning in Southeast Asia significantly contributes to carbonaceous aerosols over the western SCS. This is also supported by a good correlation between δ13CTC and the mass ratios of nss-K+/TC. Furthermore, high Cl- depletion (73 ± 23%) was observed in the aerosols over the western SCS. Given the neutralization of SO42- by ammonium (NH4+), excess nss-SO42- and oxalate (C2O42-) made major contributions to Cl- depletion in the samples strongly influenced by biomass burning. This study provides useful information to better understand the influence of biomass burning on atmospheric aerosols over the SCS.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaoyang Yang; Senchao Lai; Zifa Wang; Siyao Yue; +8 Authors

    Fine particles (PM2.5) samples, collected at Weizhou Island over the Gulf of Tonkin on a daytime and nighttime basis in the spring of 2015, were analyzed for primary and secondary organic tracers, together with organic carbon (OC), elemental carbon (EC), and stable carbon isotopic composition (δ13C) of total carbon (TC). Five organic compound classes, including saccharides, lignin/resin products, fatty acids, biogenic SOA tracers and phthalic acids, were quantified by gas chromatography/mass spectrometry (GC/MS). Levoglucosan was the most abundant organic species, indicating that the sampling site was under strong influence of biomass burning. Based on the tracer-based methods, the biomass-burning-derived fraction was estimated to be the dominant contributor to aerosol OC, accounting for 15.7% ± 11.1% and 22.2% ± 17.4% of OC in daytime and nighttime samples, respectively. In two episodes E1 and E2, organic aerosols characterized by elevated concentrations of levoglucosan as well as its isomers, sugar compounds, lignin products, high molecular weight (HMW) fatty acids and β-caryophyllinic acid, were attributed to the influence of intensive biomass burning in the northern Southeast Asia (SEA). However, the discrepancies in the ratios of levoglucosan to mannosan (L/M) and OC (L/OC) as well as the δ13C values suggest the type of biomass burning and the sources of organic aerosols in E1 and E2 were different. Hardwood and/or C4 plants were the major burning materials in E1, while burning of softwood and/or C3 plants played important role in E2. Furthermore, more complex sources and enhanced secondary contribution were found to play a part in organic aerosols in E2. This study highlights the significant influence of springtime biomass burning in the northern SEA to the organic molecular compositions of marine aerosols over the Gulf of Tonkin.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pingqing Fu; Leonard A. Barrie; Kimitaka Kawamura;

    Total suspended particles collected at Alert in the Canadian high Arctic (February-June) were analyzed for solvent extractable organic compounds using gas chromatography-mass spectrometry to better understand the sources and source apportionment of aerosol pollution that can affect the Arctic climate. More than 100 organic species were detected in the aerosols and were grouped into different compound classes based on the functional groups. Polyacids were found to be the most abundant compound class, followed by phthalates, aromatic acids, fatty acids, fatty alcohols, sugars/sugar alcohols, and n-alkanes, while polycyclic aromatic hydrocarbons, sterols, and lignin and resin acids were minor. Concentrations of total quantified organics seemed slightly higher in darkwinter aerosols (13.2-16.6 ng m(-3), average 14.5 ng m(-3)) than those after polar sunrise (6.70-17.7 ng m(-3), average 11.8 ng m(-3)). During dark winter, fossil fuel combustion products (30-51%), secondary oxidation products, as well as higher plant emissions were found as major contributors to the Arctic aerosols. However, after polar sunrise on 5 March, secondary oxidation products (5-53%) and plasticizer-derived phthalates became the dominant compound classes, followed by fossil fuel combustion and microbial/marine sources. Biomass burning emissions were found to contribute only 0.4-6% of the total identified organics, although they maximized in dark winter. This study demonstrates that long-range atmospheric transport, changes in the solar irradiance, and ambient temperature can significantly control the chemical composition of organic aerosols in the Arctic region.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jian Wu; Shaofei Kong; Xin Zeng; Yi Cheng; +9 Authors

    Levoglucosan (LG) emitted from non-biomass burning (non-BB) sources has given rise to biased or even unreasonable source identification results when adopting LG as a distinct marker of biomass burning (BB). The estimation of LG emission and its spatiotemporal variation for various sources are the keys to reducing uncertainty. This study first developed a LG emission inventory for China from 25 sub-type sources belonging to eight categories, with a 3 km × 3 km spatial resolution and monthly distribution. The total LG emission in 2014 was 145.7 Gg. Domestic BB and open BB contributed 39.2 and 34.3% of the total emission. Non-BB sources, including municipal solid waste burning (9.7%), firework burning (9.6%), meat cooking (5.4%), domestic coal burning (1.5%), ritual item burning (0.2%), and industrial coal burning (0.1%), contributed to 26.5% of the total emission. LG emission varied spatially and temporally. Non-BB sources have a significant spatiotemporal impact on BB source contributions, even in high BB emission regions or in sowing, harvesting, and winter heating seasons. The local BB contributions have been substantially overestimated by 4.28-369% in previous studies, wherein LG was solely referred to as the BB source. By 2018, LG emission from BB might decrease to 63.9% of its total emission. This high-resolution LG emission inventory can be greatly useful for source identification studies in China. It also supports future research on the modeling of smoke aging and pollution control.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2021 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2021 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhenzhong Zeng; Xu Feng; Xu Feng; Lijuan Zhang; +14 Authors

    Levoglucosan has been widely used to quantitatively assess biomass burning's contribution to ambient aerosols, but previous such assessments have not accounted for levoglucosan's degradation in the atmosphere. We develop the first global simulation of atmospheric levoglucosan, explicitly accounting for its chemical degradation, to evaluate the impacts on levoglucosan's use in quantitative aerosol source apportionment. Levoglucosan is emitted into the atmosphere from the burning of plant matter in open fires (1.7 Tg yr-1) and as biofuels (2.1 Tg yr-1). Sinks of atmospheric levoglucosan include aqueous-phase oxidation (2.9 Tg yr-1), heterogeneous oxidation (0.16 Tg yr-1), gas-phase oxidation (1.4 × 10-4 Tg yr-1), and dry and wet deposition (0.27 and 0.43 Tg yr -1). The global atmospheric burden of levoglucosan is 19 Gg with a lifetime of 1.8 days. Observations show a sharp decline in levoglucosan's concentrations and its relative abundance to organic carbon aerosol (OC) and particulate K+ from near-source to remote sites. We show that such features can only be reproduced when levoglucosan's chemical degradation is included in the model. Using model results, we develop statistical parametrizations to account for the atmospheric degradation in levoglucosan measurements, improving their use for quantitative aerosol source apportionment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science & Technology
    Article . 2021 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science & Technology
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph