Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Halla Kerkache; Hai Hoang; Pierre Cézac; Guillaume Galliéro; +1 Authors

    Pour répondre aux demandes énergétiques d'une population croissante et atténuer les émissions de carbone, il est impératif de passer des combustibles fossiles aux sources d'énergie renouvelables. Cependant, l'intermittence des énergies renouvelables pose un défi important. Pour résoudre ce problème, les aquifères salins profonds sont apparus comme une option viable pour le stockage d'énergie à grande échelle, en particulier grâce au stockage de l'hydrogène (H2) après le processus Power-to-Gas. De plus, les émissions naturelles de H2 ont été documentées dans le monde entier, et le potentiel d'accumulations souterraines présente des sources d'énergie zéro carbone prometteuses. Cependant, dans ces différents contextes, l'interaction entre le gaz, la saumure et la roche peut conduire à des phénomènes physico-chimiques et biochimiques qui peuvent avoir un impact direct sur la mobilité et la stabilité de H2. Par conséquent, la compréhension du comportement thermophysique des fluides impliqués est essentielle pour le développement du stockage souterrain d'hydrogène dans des milieux poreux et pour l'exploration des réserves naturelles de H2. Cependant, malgré les progrès récents, il existe encore un manque de données expérimentales sur les propriétés thermophysiques de l'hydrogène au contact de la saumure. Cette étude étudie l'équilibre du système H2/saumure en utilisant la simulation moléculaire de Monte Carlo à composante fractionnaire continue à travers deux méthodes : la méthode de l'ensemble de Gibbs et la simulation isobare-isotherme basée sur la loi de Henry. Différents champs de force pour les ions H2, eau et sel (NaCl) ont été évalués. Grâce à une analyse comparative, deux combinaisons de modèles, Marx-TIP4P/EP-KBF et Marx-TIP4P/2005-Madrid, ont été identifiées comme fournissant les résultats les plus précis, mais nécessitant une interaction binaire constante pour une quantification améliorée de la solubilité de l'H2 dans la saumure. Après ajustement à certaines données expérimentales limitées de la littérature, les simulations ont été étendues à des températures plus élevées (jusqu'à 453 K), à des pressions (jusqu'à 100 MPa) et à des salinités de NaCl (jusqu'à 6 mol/kgw). Enfin, les données nouvellement générées ont facilité le raffinement d'un modèle thermodynamique en utilisant l'approche de Krichevsky et Kasarnovsky, améliorant les estimations des pertes de dissolution de H2, la capacité d'étanchéité du caprock et les informations sur la production et l'accumulation naturelles de H2 sous terre. Para abordar las demandas energéticas de una población en crecimiento y mitigar las emisiones de carbono, es imperativo pasar de los combustibles fósiles a las fuentes de energía renovables. Sin embargo, la intermitencia de las energías renovables plantea un reto importante. Para abordar este problema, los acuíferos salinos profundos han surgido como una opción viable para el almacenamiento de energía a gran escala, particularmente a través del almacenamiento de hidrógeno (H2) después del proceso Power-to-Gas. Además, las emisiones naturales de H2 se han documentado en todo el mundo, y el potencial de acumulaciones subterráneas presenta fuentes de energía prometedoras sin carbono. Sin embargo, en estos diferentes contextos, la interacción entre el gas, la salmuera y la roca puede conducir a fenómenos físico-químicos y bioquímicos que pueden afectar directamente la movilidad y la estabilidad del H2. Por lo tanto, comprender el comportamiento termofísico de los fluidos involucrados es esencial para el desarrollo del Almacenamiento Subterráneo de Hidrógeno en medios porosos y para explorar las reservas naturales de H2. Sin embargo, a pesar de los avances recientes, todavía hay una falta de datos experimentales sobre las propiedades termofísicas del hidrógeno en contacto con la salmuera. Este estudio investiga el equilibrio del sistema H2/salmuera utilizando la simulación molecular del Componente Fraccionario Continuo Monte Carlo a través de dos métodos: el método del conjunto de Gibbs y la simulación isobárica-isotérmica basada en la ley de Henry. Se evaluaron diferentes campos de fuerza para iones H2, agua y sal (NaCl). A través de un análisis comparativo, se identificaron dos combinaciones de modelos, Marx-TIP4P/EP-KBF y Marx-TIP4P/2005-Madrid, que proporcionan los resultados más precisos, aunque requieren una interacción binaria constante para una cuantificación mejorada de la solubilidad de H2 en salmuera. Después de ajustar algunos datos experimentales limitados de la literatura, las simulaciones se extendieron a temperaturas más altas (hasta 453 K), presiones (hasta 100 MPa) y salinidades de NaCl (hasta 6 mol/kgw). Finalmente, los datos recién generados facilitaron el refinamiento de un modelo termodinámico utilizando el enfoque de Krichevsky y Kasarnovsky, mejorando las estimaciones de las pérdidas de disolución de H2, la capacidad de sellado de caprock y los conocimientos sobre la producción y acumulación natural de H2 bajo tierra. To address the energy demands of a growing population and mitigate carbon emissions, it is imperative to transition from fossil fuels to renewable energy sources. However, the intermittency of renewable energies poses a significant challenge. To address this issue, deep saline aquifers have emerged as a viable option for large-scale energy storage, particularly through hydrogen (H2) storage post Power-to-Gas process. Moreover, natural H2 emissions have been documented worldwide, and the potential for underground accumulations presents promising zero-carbon energy sources. However, in these different contexts, the interaction between gas, brine, and rock can lead to physico-chemical and biochemical phenomena that can directly impact the mobility and stability of H2. Therefore, understanding the thermophysical behavior of the involved fluids is essential for the development Underground Hydrogen Storage in porous media and for exploring natural H2 reserves. However, despite recent advancements, there is still a lack of experimental data on thermophysical properties of hydrogen in contact with brine. This study investigates the equilibrium of the H2/brine system using Continuous Fractional Component Monte Carlo molecular simulation through two methods: the Gibbs ensemble method and the isobaric-isothermal simulation based on Henry's law. Different force fields for H2, water and salt (NaCl) ions were evaluated. Through a comparative analysis, two model combinations, Marx-TIP4P/EP-KBF and Marx-TIP4P/2005-Madrid, were identified as providing the most accurate results, albeit requiring a constant binary interaction for enhanced H2 solubility quantification in brine. After adjustment to some limited experimental data from literature, the simulations were extended to higher temperatures (up to 453 K), pressures (up to 100 MPa), and NaCl salinities (up to 6 mol/kgw). Finally, the newly generated data facilitated the refinement of a thermodynamic model using the Krichevsky and Kasarnovsky approach, improving estimations of H2 dissolution losses, caprock sealing capacity, and insights into natural H2 production and accumulation underground. لتلبية متطلبات الطاقة لعدد متزايد من السكان والتخفيف من انبعاثات الكربون، من الضروري الانتقال من الوقود الأحفوري إلى مصادر الطاقة المتجددة. ومع ذلك، فإن انقطاع الطاقات المتجددة يشكل تحديًا كبيرًا. ولمعالجة هذه المشكلة، برزت طبقات المياه الجوفية المالحة العميقة كخيار قابل للتطبيق لتخزين الطاقة على نطاق واسع، لا سيما من خلال تخزين الهيدروجين (H2) بعد عملية تحويل الطاقة إلى غاز. علاوة على ذلك، تم توثيق انبعاثات الهيدروجين الطبيعية في جميع أنحاء العالم، وتوفر إمكانية التراكمات تحت الأرض مصادر طاقة واعدة خالية من الكربون. ومع ذلك، في هذه السياقات المختلفة، يمكن أن يؤدي التفاعل بين الغاز والمحلول الملحي والصخور إلى ظواهر فيزيائية كيميائية وبيوكيميائية يمكن أن تؤثر بشكل مباشر على حركة واستقرار H2. لذلك، فإن فهم السلوك الفيزيائي الحراري للسوائل المعنية أمر ضروري لتطوير تخزين الهيدروجين تحت الأرض في الوسائط المسامية ولاستكشاف احتياطيات الهيدروجين الطبيعية. ومع ذلك، على الرغم من التطورات الأخيرة، لا يزال هناك نقص في البيانات التجريبية حول الخصائص الفيزيائية الحرارية للهيدروجين الملامس للمحلول الملحي. تبحث هذه الدراسة في توازن نظام H2/المحلول الملحي باستخدام المحاكاة الجزيئية للمكون الكسري المستمر مونت كارلو من خلال طريقتين: طريقة جيبس للمجموعة والمحاكاة متساوية الحرارة على أساس قانون هنري. تم تقييم حقول القوة المختلفة لأيونات H2 والماء والملح (NaCl). من خلال التحليل المقارن، تم تحديد مجموعتين من النماذج، وهما Marx - TIP4P/EP - KBF و Marx - TIP4P/2005 - Madrid، على أنهما توفران النتائج الأكثر دقة، وإن كانت تتطلب تفاعلًا ثنائيًا ثابتًا لتعزيز قياس كمية ذوبان H2 في المحلول الملحي. بعد تعديل بعض البيانات التجريبية المحدودة من الأدبيات، تم تمديد المحاكاة إلى درجات حرارة أعلى (تصل إلى 453 كلفن)، وضغوط (تصل إلى 100 ميجا باسكال)، وملوحة كلوريد الصوديوم (تصل إلى 6 مول/كجم). أخيرًا، سهلت البيانات التي تم إنشاؤها حديثًا صقل نموذج ديناميكي حراري باستخدام نهج Krichevsky و Kasarnovsky، مما أدى إلى تحسين تقديرات خسائر ذوبان H2، وقدرة ختم caprock، ورؤى حول إنتاج H2 الطبيعي وتراكمه تحت الأرض.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Molecular Liquids
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    https://dx.doi.org/10.60692/v4...
    Other literature type . 2024
    Data sources: Datacite
    https://dx.doi.org/10.60692/ek...
    Other literature type . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Molecular Liquids
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      https://dx.doi.org/10.60692/v4...
      Other literature type . 2024
      Data sources: Datacite
      https://dx.doi.org/10.60692/ek...
      Other literature type . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Artola, P.A.; Rousseau, B.; Galliero, Guillaume;

    We present a new model for thermal diffusion, and we compare its results for both simple and real systems. This model is derived from a kinetic approach with explicit mass and chemical contributions. It involves self-diffusion activation free energies, following Prigogine's original approach. We performed, furthermore, both equilibrium and nonequilibrium molecular dynamics evaluations in order to compute respectively the self-diffusion activation free enthalpies and the Soret coefficient when no experimental data were available. Our model is in very good agreement with simulation data on Lennard-Jones mixtures, and a good behavior is noted for the water-ethanol mixture, where the composition dependence at which the Soret coefficient changes its sign is predicted very accurately. Finally, we propose a new water-ethanol experiment at higher temperature in order to check the validity of our model.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hal
    Article . 2008
    Data sources: Hal
    Journal of the American Chemical Society
    Article . 2008 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hal
      Article . 2008
      Data sources: Hal
      Journal of the American Chemical Society
      Article . 2008 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Guillaume Watson; Antoine Baylaucq; Guillaume Galliero; Guillaume Galliero; +2 Authors

    The viscosity of the binary system ethanol + n-heptane has been measured with a falling-body viscometer for seven compositions as well as for the pure compounds in the temperature range 293.15-353.15 K and up to 100 MPa with an experimental uncertainty of ±2%. At 0.1 MPa, the viscosity has been measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of ±1%. A total of 208 experimental data points are reported. The viscosity behavior of this binary system is interpreted as the results of changes in the free volume, and the breaking or weakening of hydrogen bonds. The excess activation energy for viscous flow of the mixtures is negative with a maximum absolute value of 0.3 kJ mol-1, indicating a very weakly interacting system. The data of this binary system as well as those recently measured for ethanol + toluene have been used to study the performance of some viscosity models with a physical and theoretical background. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. In addition to these models, the simple compositional models by Grunberg-Nissan and Katti-Chaudhri have also been applied. Overall a satisfactory representation of the viscosity of these two binary ethanol + C7 hydrocarbon systems is found for the different models within the considered T, P range taking into account their simplicity.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fluid Phase Equilibria
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hal
    Article . 2006
    Data sources: Hal
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fluid Phase Equilibria
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hal
      Article . 2006
      Data sources: Hal
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Halla Kerkache; Hai Hoang; Pierre Cézac; Guillaume Galliéro; +1 Authors

    Pour répondre aux demandes énergétiques d'une population croissante et atténuer les émissions de carbone, il est impératif de passer des combustibles fossiles aux sources d'énergie renouvelables. Cependant, l'intermittence des énergies renouvelables pose un défi important. Pour résoudre ce problème, les aquifères salins profonds sont apparus comme une option viable pour le stockage d'énergie à grande échelle, en particulier grâce au stockage de l'hydrogène (H2) après le processus Power-to-Gas. De plus, les émissions naturelles de H2 ont été documentées dans le monde entier, et le potentiel d'accumulations souterraines présente des sources d'énergie zéro carbone prometteuses. Cependant, dans ces différents contextes, l'interaction entre le gaz, la saumure et la roche peut conduire à des phénomènes physico-chimiques et biochimiques qui peuvent avoir un impact direct sur la mobilité et la stabilité de H2. Par conséquent, la compréhension du comportement thermophysique des fluides impliqués est essentielle pour le développement du stockage souterrain d'hydrogène dans des milieux poreux et pour l'exploration des réserves naturelles de H2. Cependant, malgré les progrès récents, il existe encore un manque de données expérimentales sur les propriétés thermophysiques de l'hydrogène au contact de la saumure. Cette étude étudie l'équilibre du système H2/saumure en utilisant la simulation moléculaire de Monte Carlo à composante fractionnaire continue à travers deux méthodes : la méthode de l'ensemble de Gibbs et la simulation isobare-isotherme basée sur la loi de Henry. Différents champs de force pour les ions H2, eau et sel (NaCl) ont été évalués. Grâce à une analyse comparative, deux combinaisons de modèles, Marx-TIP4P/EP-KBF et Marx-TIP4P/2005-Madrid, ont été identifiées comme fournissant les résultats les plus précis, mais nécessitant une interaction binaire constante pour une quantification améliorée de la solubilité de l'H2 dans la saumure. Après ajustement à certaines données expérimentales limitées de la littérature, les simulations ont été étendues à des températures plus élevées (jusqu'à 453 K), à des pressions (jusqu'à 100 MPa) et à des salinités de NaCl (jusqu'à 6 mol/kgw). Enfin, les données nouvellement générées ont facilité le raffinement d'un modèle thermodynamique en utilisant l'approche de Krichevsky et Kasarnovsky, améliorant les estimations des pertes de dissolution de H2, la capacité d'étanchéité du caprock et les informations sur la production et l'accumulation naturelles de H2 sous terre. Para abordar las demandas energéticas de una población en crecimiento y mitigar las emisiones de carbono, es imperativo pasar de los combustibles fósiles a las fuentes de energía renovables. Sin embargo, la intermitencia de las energías renovables plantea un reto importante. Para abordar este problema, los acuíferos salinos profundos han surgido como una opción viable para el almacenamiento de energía a gran escala, particularmente a través del almacenamiento de hidrógeno (H2) después del proceso Power-to-Gas. Además, las emisiones naturales de H2 se han documentado en todo el mundo, y el potencial de acumulaciones subterráneas presenta fuentes de energía prometedoras sin carbono. Sin embargo, en estos diferentes contextos, la interacción entre el gas, la salmuera y la roca puede conducir a fenómenos físico-químicos y bioquímicos que pueden afectar directamente la movilidad y la estabilidad del H2. Por lo tanto, comprender el comportamiento termofísico de los fluidos involucrados es esencial para el desarrollo del Almacenamiento Subterráneo de Hidrógeno en medios porosos y para explorar las reservas naturales de H2. Sin embargo, a pesar de los avances recientes, todavía hay una falta de datos experimentales sobre las propiedades termofísicas del hidrógeno en contacto con la salmuera. Este estudio investiga el equilibrio del sistema H2/salmuera utilizando la simulación molecular del Componente Fraccionario Continuo Monte Carlo a través de dos métodos: el método del conjunto de Gibbs y la simulación isobárica-isotérmica basada en la ley de Henry. Se evaluaron diferentes campos de fuerza para iones H2, agua y sal (NaCl). A través de un análisis comparativo, se identificaron dos combinaciones de modelos, Marx-TIP4P/EP-KBF y Marx-TIP4P/2005-Madrid, que proporcionan los resultados más precisos, aunque requieren una interacción binaria constante para una cuantificación mejorada de la solubilidad de H2 en salmuera. Después de ajustar algunos datos experimentales limitados de la literatura, las simulaciones se extendieron a temperaturas más altas (hasta 453 K), presiones (hasta 100 MPa) y salinidades de NaCl (hasta 6 mol/kgw). Finalmente, los datos recién generados facilitaron el refinamiento de un modelo termodinámico utilizando el enfoque de Krichevsky y Kasarnovsky, mejorando las estimaciones de las pérdidas de disolución de H2, la capacidad de sellado de caprock y los conocimientos sobre la producción y acumulación natural de H2 bajo tierra. To address the energy demands of a growing population and mitigate carbon emissions, it is imperative to transition from fossil fuels to renewable energy sources. However, the intermittency of renewable energies poses a significant challenge. To address this issue, deep saline aquifers have emerged as a viable option for large-scale energy storage, particularly through hydrogen (H2) storage post Power-to-Gas process. Moreover, natural H2 emissions have been documented worldwide, and the potential for underground accumulations presents promising zero-carbon energy sources. However, in these different contexts, the interaction between gas, brine, and rock can lead to physico-chemical and biochemical phenomena that can directly impact the mobility and stability of H2. Therefore, understanding the thermophysical behavior of the involved fluids is essential for the development Underground Hydrogen Storage in porous media and for exploring natural H2 reserves. However, despite recent advancements, there is still a lack of experimental data on thermophysical properties of hydrogen in contact with brine. This study investigates the equilibrium of the H2/brine system using Continuous Fractional Component Monte Carlo molecular simulation through two methods: the Gibbs ensemble method and the isobaric-isothermal simulation based on Henry's law. Different force fields for H2, water and salt (NaCl) ions were evaluated. Through a comparative analysis, two model combinations, Marx-TIP4P/EP-KBF and Marx-TIP4P/2005-Madrid, were identified as providing the most accurate results, albeit requiring a constant binary interaction for enhanced H2 solubility quantification in brine. After adjustment to some limited experimental data from literature, the simulations were extended to higher temperatures (up to 453 K), pressures (up to 100 MPa), and NaCl salinities (up to 6 mol/kgw). Finally, the newly generated data facilitated the refinement of a thermodynamic model using the Krichevsky and Kasarnovsky approach, improving estimations of H2 dissolution losses, caprock sealing capacity, and insights into natural H2 production and accumulation underground. لتلبية متطلبات الطاقة لعدد متزايد من السكان والتخفيف من انبعاثات الكربون، من الضروري الانتقال من الوقود الأحفوري إلى مصادر الطاقة المتجددة. ومع ذلك، فإن انقطاع الطاقات المتجددة يشكل تحديًا كبيرًا. ولمعالجة هذه المشكلة، برزت طبقات المياه الجوفية المالحة العميقة كخيار قابل للتطبيق لتخزين الطاقة على نطاق واسع، لا سيما من خلال تخزين الهيدروجين (H2) بعد عملية تحويل الطاقة إلى غاز. علاوة على ذلك، تم توثيق انبعاثات الهيدروجين الطبيعية في جميع أنحاء العالم، وتوفر إمكانية التراكمات تحت الأرض مصادر طاقة واعدة خالية من الكربون. ومع ذلك، في هذه السياقات المختلفة، يمكن أن يؤدي التفاعل بين الغاز والمحلول الملحي والصخور إلى ظواهر فيزيائية كيميائية وبيوكيميائية يمكن أن تؤثر بشكل مباشر على حركة واستقرار H2. لذلك، فإن فهم السلوك الفيزيائي الحراري للسوائل المعنية أمر ضروري لتطوير تخزين الهيدروجين تحت الأرض في الوسائط المسامية ولاستكشاف احتياطيات الهيدروجين الطبيعية. ومع ذلك، على الرغم من التطورات الأخيرة، لا يزال هناك نقص في البيانات التجريبية حول الخصائص الفيزيائية الحرارية للهيدروجين الملامس للمحلول الملحي. تبحث هذه الدراسة في توازن نظام H2/المحلول الملحي باستخدام المحاكاة الجزيئية للمكون الكسري المستمر مونت كارلو من خلال طريقتين: طريقة جيبس للمجموعة والمحاكاة متساوية الحرارة على أساس قانون هنري. تم تقييم حقول القوة المختلفة لأيونات H2 والماء والملح (NaCl). من خلال التحليل المقارن، تم تحديد مجموعتين من النماذج، وهما Marx - TIP4P/EP - KBF و Marx - TIP4P/2005 - Madrid، على أنهما توفران النتائج الأكثر دقة، وإن كانت تتطلب تفاعلًا ثنائيًا ثابتًا لتعزيز قياس كمية ذوبان H2 في المحلول الملحي. بعد تعديل بعض البيانات التجريبية المحدودة من الأدبيات، تم تمديد المحاكاة إلى درجات حرارة أعلى (تصل إلى 453 كلفن)، وضغوط (تصل إلى 100 ميجا باسكال)، وملوحة كلوريد الصوديوم (تصل إلى 6 مول/كجم). أخيرًا، سهلت البيانات التي تم إنشاؤها حديثًا صقل نموذج ديناميكي حراري باستخدام نهج Krichevsky و Kasarnovsky، مما أدى إلى تحسين تقديرات خسائر ذوبان H2، وقدرة ختم caprock، ورؤى حول إنتاج H2 الطبيعي وتراكمه تحت الأرض.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Molecular Liquids
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    https://dx.doi.org/10.60692/v4...
    Other literature type . 2024
    Data sources: Datacite
    https://dx.doi.org/10.60692/ek...
    Other literature type . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Molecular Liquids
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      https://dx.doi.org/10.60692/v4...
      Other literature type . 2024
      Data sources: Datacite
      https://dx.doi.org/10.60692/ek...
      Other literature type . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Artola, P.A.; Rousseau, B.; Galliero, Guillaume;

    We present a new model for thermal diffusion, and we compare its results for both simple and real systems. This model is derived from a kinetic approach with explicit mass and chemical contributions. It involves self-diffusion activation free energies, following Prigogine's original approach. We performed, furthermore, both equilibrium and nonequilibrium molecular dynamics evaluations in order to compute respectively the self-diffusion activation free enthalpies and the Soret coefficient when no experimental data were available. Our model is in very good agreement with simulation data on Lennard-Jones mixtures, and a good behavior is noted for the water-ethanol mixture, where the composition dependence at which the Soret coefficient changes its sign is predicted very accurately. Finally, we propose a new water-ethanol experiment at higher temperature in order to check the validity of our model.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hal
    Article . 2008
    Data sources: Hal
    Journal of the American Chemical Society
    Article . 2008 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hal
      Article . 2008
      Data sources: Hal
      Journal of the American Chemical Society
      Article . 2008 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Guillaume Watson; Antoine Baylaucq; Guillaume Galliero; Guillaume Galliero; +2 Authors

    The viscosity of the binary system ethanol + n-heptane has been measured with a falling-body viscometer for seven compositions as well as for the pure compounds in the temperature range 293.15-353.15 K and up to 100 MPa with an experimental uncertainty of ±2%. At 0.1 MPa, the viscosity has been measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of ±1%. A total of 208 experimental data points are reported. The viscosity behavior of this binary system is interpreted as the results of changes in the free volume, and the breaking or weakening of hydrogen bonds. The excess activation energy for viscous flow of the mixtures is negative with a maximum absolute value of 0.3 kJ mol-1, indicating a very weakly interacting system. The data of this binary system as well as those recently measured for ethanol + toluene have been used to study the performance of some viscosity models with a physical and theoretical background. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. In addition to these models, the simple compositional models by Grunberg-Nissan and Katti-Chaudhri have also been applied. Overall a satisfactory representation of the viscosity of these two binary ethanol + C7 hydrocarbon systems is found for the different models within the considered T, P range taking into account their simplicity.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fluid Phase Equilibria
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hal
    Article . 2006
    Data sources: Hal
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fluid Phase Equilibria
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hal
      Article . 2006
      Data sources: Hal
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph