- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1FCT| LA 1Mamdouh A. Gadalla; Mamdouh A. Gadalla; Yusuf Umar; Omar Abdelaziz; Omar Abdelaziz; Basudeb Saha; Basudeb Saha; Christian Hulteberg; Omar Aboelazayem; Omar Aboelazayem; Orlando Velasco;The valorisation of lignin is being increasingly recognised to improve the economics of pulp and paper making mills. In the present study, an integrated lignin–glycerol valorisation strategy is introduced with an overarching aim for enhancing the process value chains. LignoBoost kraft lignin was subjected to base-catalysed depolymerisation using glycerol as a co-solvent. The generated bio-oil was used as a renewable additive to biodiesel for enhancing the oxygen stability. The influence of three independent parameters including temperature, time and glycerol amount on lignin depolymerisation was investigated. Response surface methodology was applied to design the experiments and to optimise the process for maximising the yield and antioxidant impact of bio-oil. The results showed that glycerol has a positive qualitative and quantitative impact on the produced bio-oil, where an enhancement in the yield (up to 23.8%) and antioxidant activity (up to 99 min induction period) were achieved using the PetroOxy method (EN16091). The addition of 1 wt% bio-oil on biodiesel led to an improvement in the oxidation stability over a neat sample of up to ∼340%, making it compliant with European standard (EN14214). The proposed process presents a biorefinery paradigm for the integrated utilisation of waste cooking oil, lignin and glycerol.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CORE (RIOXX-UK Aggregator)Article . 2021License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CORE (RIOXX-UK Aggregator)Article . 2021License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Mamdouh A. Gadalla; Basudeb Saha; O Aboelazayem; O Aboelazayem;Biodiesel production using supercritical methanol in the absence of catalyst has been analysed by studying the main factors affecting biodiesel yield. A quadratic polynomial model has been developed using Response Surface Methodology (RSM). Box-Behnken Design (BBD) has been used to evaluate the influence of four independent variables i.e. methanol to oil (M:O) molar ratio, temperature, pressure and time on biodiesel yield. The optimum biodiesel yield is 91% at M:O molar ratio, temperature, pressure and reaction time of 37:1, 253.5oC, 198.5 bar and 14.8 minutes, respectively. Overall reaction kinetics has been studied at optimum conditions concluding a pseudo first order reaction with reaction rate constant of 0.0006 s-1. Moreover, thermodynamics of the reaction has been analysed in the temperature range between 240 and 280oC concluding frequency factor and activation energy of 4.05 s-1 and 50.5 kJ/mol, respectively. A kinetic reactor has been simulated on HYSYS using the obtained kinetic data resulting in 91.7% conversion of triglycerides (TG) with 0.2% relative error from the experimental results.
Renewable Energy arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable Energy arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Mamdouh A. Gadalla; Mamdouh A. Gadalla; O Aboelazayem; O Aboelazayem; Basudeb Saha;In this study, a simple and robust derivatisation-free method has been developed using a gas chromatograph (GC), which has been validated as a suitable analysis for free fatty acids (FFAs) of waste cooking oil (WCO). As biodiesel synthesis from high acid value WCO involves pre-treatment steps, a non-catalytic approach has been employed for biodiesel production. This work has focused on the esterification of FFAs of high acidity feedstock for fatty acid methyl esters (FAME) production. The effect of four independent controllable factors, i.e. methanol to oil (M:O) molar ratio, temperature, pressure and time on FFAs conversion has been investigated. Response Surface Methodology (RSM) via Central Composite Design (CCD) has been implemented for designing experimental runs and optimising the process variables for maximum FFAs conversion. Four quadratic regression models have been developed representing an empirical relationship between reaction variables and responses. The adequacy of the predicted models has been checked by numerous statistical validation techniques including analysis of variance (ANOVA) at 95% confidence level. The developed optimum conditions have been reported at 25:1, 256 °C, 110 bar and 16.6 min for M:O molar ratio, temperature, pressure and time, respectively. The predicted optimal conditions have been validated experimentally with 0.22% relative error.
Renewable Energy arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable Energy arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Echresh Zadeh, Z.; Abdulkhani, A.; Saha, B;This study focuses on the production and characterisation of fast pyrolysis bio-oil from hardwood (Populus) and softwood (Spruce) using a bench-scale pyrolysis reactor at two different temperatures. In this study, a mixed solvent extraction method with different polarities was developed to extract different components of bio-crude oil into three fractions. The obtained fractions were characterized by using gas chromatography and mass spectrometry (GC-MS). The effect of temperature on the production of bio-oil and on the chemical distribution in bio-oil was examined. The maximum bio-oil yield (71.20%) was obtained at 873 K for bio-oil produced from softwood (Spruce). In contrast, at a temperature of 773 K, the bio-oil yields were 62.50% and 65.40% for bio-oil obtained from hardwood (Populus) and softwood (Spruce) respectively. More phenolic compounds were extracted at a temperature of 773 K for bio-oil derived from softwood (Spruce) whereas the bio-oil obtained from hardwood (Populus) produced mostly furans, acids and sugar compounds at this temperature. For both types of bio-oil, a wide variety of chemical groups were identified at a temperature of 873 K in comparison to 773 K.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Hojatisaeidi, F.; Mureddu, M.; Dessì, F.; Durand, G.; Saha, B;doi: 10.3390/en13030549
Porous boron nitride is a new class of solid adsorbent with applications in CO2 capture. In order to further enhance the adsorption capacities of materials, new strategies such as porosity tuning, element doping and surface modification have been taken into account. In this work, metal-free modification of porous boron nitride (BN) has been prepared by a structure directing agent via simple heat treatment under N2 flow. We have demonstrated that textural properties of BN play a pivotal role in CO2 adsorption behavior. Therefore, addition of a triblock copolymer surfactant (P123) has been adopted to improve the pore ordering and textural properties of porous BN and its influence on the morphological and structural properties of pristine BN has been characterized. The obtained BN-P123 exhibits a high surface area of 476 m2/g, a large pore volume of 0.83 cm3/g with an abundance of micropores. More importantly, after modification with P123 copolymer, the capacity of pure CO2 on porous BN has improved by about 34.5% compared to pristine BN (2.69 mmol/g for BN-P123 vs. 2.00 mmol/g for pristine BN under ambient condition). The unique characteristics of boron nitride opens up new routes for designing porous BN, which could be employed for optimizing CO2 adsorption.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/549/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/549/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Mamdouh A. Gadalla; Mamdouh A. Gadalla; Basudeb Saha; O Aboelazayem; O Aboelazayem;In this study, valorisation of high acid value waste cooking oil into biodiesel has been investigated. Non-catalytic transesterification using supercritical methanol has been used for biodiesel production. Four controllable independent process variables have been considered for analysis including methanol to oil (M:O) molar ratio, temperature, pressure and time. Uncommon effects of process variables on the reaction responses, e.g. biodiesel and glycerol yields, have been observed and extensively discussed. Response surface methodology (RSM) via Central Composite Design (CCD) has been used to analyse the effect of the process variables and their interactions on the reaction responses. A quadratic model for each response has been developed representing the interrelationships between process variables and responses. Analysis of Variance (ANOVA) has been used to verify the significance effect of each process variable and their interactions on reaction responses. Optimal reaction conditions have been predicted using RSM for 98% and 2.05% of biodiesel and glycerol yields, respectively at 25:1 M:O molar ratio, 265oC temperature, 110 bar pressure and 20 minutes reaction time. The predicted optimal conditions have been validated experimentally resulting in 98.82% biodiesel yield, representing 0.83% relative error. The quality of the produced biodiesel showed excellent agreement with the European biodiesel standard (EN14214).
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Authors: Omar Aboelazayem; Mamdouh Gadalla; Basudeb Saha;doi: 10.3390/en15103766
Biodiesel has been established as a promising alternative fuel to petroleum diesel. This study offers a promising energy conversion platform to valorise high acidity waste cooking oil (WCO) into biodiesel in a single-step reaction via supercritical methanol. Carbon dioxide (CO2) has been used as a co-solvent in the reaction with a catalytic effect to enhance the production of biodiesel. This work provides an in-depth assessment of the yield of four fatty acids methyl esters (FAME) from their correspondent triglycerides and fatty acids. The effects of four independent process variables, i.e., methanol to oil (M:O) molar ratio, temperature, pressure, and time, have been investigated using Response Surface Methodology (RSM). Four quadratic models have been developed between process variables and the yield of FAMEs. The statistical validation of the predicted models has been performed using analysis of variance (ANOVA). Numerical optimisation has been employed to predict the optimal conditions for biodiesel production. The predicted optimal conditions are at 25:1 M:O molar ratio, 254.7 °C, 110 bar within 17 min resulting in 99.2%, 99.3%, 99.13%, and 99.05% of methyl-oleate, methyl-palmitate, methyl-linoleate, and methyl-stearate yields, respectively. The predicted optimum conditions have been validated experimentally.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3766/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3766/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 United KingdomPublisher:Elsevier BV Haigh, K.F.; Vladisavljević, G.T.; Reynolds, J.C.; Nagy, Z.; Saha, B.;AbstractThe pre-treatment of used cooking oil (UCO) for the preparation of biodiesel has been investigated using Novozyme 435, Candida antarctica Lipase B immobilised on acrylic resin, as the catalyst. The reactions in UCO were carried out using a jacketed batch reactor with a reflux condenser. The liquid chromatography–mass spectrometry (LC–MS) method was developed to monitor the mono-, di- and triglyceride concentrations and it was found that the method was sensitive enough to separate isomers, including diglyceride isomers. It was found that the 1,3 diglyceride isomer reacted more readily than the 1,2 isomer indicating stereoselectivity of the catalyst. This work showed that Novozyme 435 will catalyse the esterification of free fatty acids (FFAs) and the transesterification of mono- and diglycerides typically found in UCO when Novozyme 435 is used to catalyse the pre-treatment of UCO for the formation of biodiesel. A kinetic model was used to investigate the mechanism and indicated that the reaction progressed with the sequential hydrolysis esterification reactions in parallel with transesterification.
Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefChemical Engineering Research and DesignArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefChemical Engineering Research and DesignArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Onyenkeadi, V; Aboelazayem, O; Saha, B;© 2019 The synthesis of butylene carbonate (BC) through the reaction of butylene oxide (BO) and carbon dioxide (CO 2 ) has been investigated using highly efficient graphene-inorganic heterogeneous catalyst, cerium-lanthana-zirconia and graphene oxide represented as Ce–La–Zr–GO nanocomposite. The systematic multivariate optimisation of BC synthesis via CO 2 utilisation using graphene-inorganic nanocomposite has been developed using Box-Behnken Design (BBD) of Response Surface Methodology (RSM). The BBD has been applied to optimise the single and interactive effect of four independent reaction variables, i.e. reaction temperature, pressure, catalyst loading and reaction time on the conversion of BO and BC yield. Two quadratic regression models have been developed representing an empirical relationship between each reaction response and all the independent variables. The predicted models have been validated statistically and experimentally, where a high agreement has been observed between predicted and experimental results with approximate relative errors of ±1.45% and ±1.52% for both the BO conversion and BC yield, respectively. The implementation of RSM optimisation process for the conversion of BC through the reaction between BO and CO 2 , has offered a new direction in green chemical process in terms of waste reduction, maximising production of value-added chemicals and effectively utilise CO 2 gas emissions.
Catalysis Today arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Catalysis Today arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Authors: Sumaiya Zainal Abidin; Misbahu Ladan Mohammed; Basudeb Saha;This study focuses on the development of a novel two-stage (esterification–transesterification) synthesis of biodiesel from used cooking oil (UCO) using ion exchange resins as catalysts. Esterification of the UCO has been conducted using various types of ion exchange resin catalysts. Purolite D5081, a hyper cross-linked resin, showed the best catalytic performance among all the catalysts investigated, with 92% of free fatty acid (FFA) conversion. The transesterification of pre-treated used cooking oil (P-UCO) was carried out sequentially using several acidic and basic ion exchange resin catalysts. In the screening process, the Diaion PA306s catalyst showed the best catalytic performance and was selected for the optimisation study. A triglyceride conversion of ca. 75% was recorded at the optimum reaction conditions (9% (w/w) catalyst loading, 328 K reaction temperature, 18:1 methanol to P-UCO feed mole ratio, and 350 rpm stirring speed). Furthermore, the reusability study of the Diaion PA306s catalyst gave a similar triglyceride conversion after a couple of cycles without losing its catalytic activity. A dry purification technique was found to give the lowest percentage of glycerides and glycerine content and, therefore, was chosen as the best biodiesel purification route.
Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/8/1209/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/8/1209/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1FCT| LA 1Mamdouh A. Gadalla; Mamdouh A. Gadalla; Yusuf Umar; Omar Abdelaziz; Omar Abdelaziz; Basudeb Saha; Basudeb Saha; Christian Hulteberg; Omar Aboelazayem; Omar Aboelazayem; Orlando Velasco;The valorisation of lignin is being increasingly recognised to improve the economics of pulp and paper making mills. In the present study, an integrated lignin–glycerol valorisation strategy is introduced with an overarching aim for enhancing the process value chains. LignoBoost kraft lignin was subjected to base-catalysed depolymerisation using glycerol as a co-solvent. The generated bio-oil was used as a renewable additive to biodiesel for enhancing the oxygen stability. The influence of three independent parameters including temperature, time and glycerol amount on lignin depolymerisation was investigated. Response surface methodology was applied to design the experiments and to optimise the process for maximising the yield and antioxidant impact of bio-oil. The results showed that glycerol has a positive qualitative and quantitative impact on the produced bio-oil, where an enhancement in the yield (up to 23.8%) and antioxidant activity (up to 99 min induction period) were achieved using the PetroOxy method (EN16091). The addition of 1 wt% bio-oil on biodiesel led to an improvement in the oxidation stability over a neat sample of up to ∼340%, making it compliant with European standard (EN14214). The proposed process presents a biorefinery paradigm for the integrated utilisation of waste cooking oil, lignin and glycerol.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CORE (RIOXX-UK Aggregator)Article . 2021License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CORE (RIOXX-UK Aggregator)Article . 2021License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Mamdouh A. Gadalla; Basudeb Saha; O Aboelazayem; O Aboelazayem;Biodiesel production using supercritical methanol in the absence of catalyst has been analysed by studying the main factors affecting biodiesel yield. A quadratic polynomial model has been developed using Response Surface Methodology (RSM). Box-Behnken Design (BBD) has been used to evaluate the influence of four independent variables i.e. methanol to oil (M:O) molar ratio, temperature, pressure and time on biodiesel yield. The optimum biodiesel yield is 91% at M:O molar ratio, temperature, pressure and reaction time of 37:1, 253.5oC, 198.5 bar and 14.8 minutes, respectively. Overall reaction kinetics has been studied at optimum conditions concluding a pseudo first order reaction with reaction rate constant of 0.0006 s-1. Moreover, thermodynamics of the reaction has been analysed in the temperature range between 240 and 280oC concluding frequency factor and activation energy of 4.05 s-1 and 50.5 kJ/mol, respectively. A kinetic reactor has been simulated on HYSYS using the obtained kinetic data resulting in 91.7% conversion of triglycerides (TG) with 0.2% relative error from the experimental results.
Renewable Energy arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable Energy arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Mamdouh A. Gadalla; Mamdouh A. Gadalla; O Aboelazayem; O Aboelazayem; Basudeb Saha;In this study, a simple and robust derivatisation-free method has been developed using a gas chromatograph (GC), which has been validated as a suitable analysis for free fatty acids (FFAs) of waste cooking oil (WCO). As biodiesel synthesis from high acid value WCO involves pre-treatment steps, a non-catalytic approach has been employed for biodiesel production. This work has focused on the esterification of FFAs of high acidity feedstock for fatty acid methyl esters (FAME) production. The effect of four independent controllable factors, i.e. methanol to oil (M:O) molar ratio, temperature, pressure and time on FFAs conversion has been investigated. Response Surface Methodology (RSM) via Central Composite Design (CCD) has been implemented for designing experimental runs and optimising the process variables for maximum FFAs conversion. Four quadratic regression models have been developed representing an empirical relationship between reaction variables and responses. The adequacy of the predicted models has been checked by numerous statistical validation techniques including analysis of variance (ANOVA) at 95% confidence level. The developed optimum conditions have been reported at 25:1, 256 °C, 110 bar and 16.6 min for M:O molar ratio, temperature, pressure and time, respectively. The predicted optimal conditions have been validated experimentally with 0.22% relative error.
Renewable Energy arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable Energy arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Echresh Zadeh, Z.; Abdulkhani, A.; Saha, B;This study focuses on the production and characterisation of fast pyrolysis bio-oil from hardwood (Populus) and softwood (Spruce) using a bench-scale pyrolysis reactor at two different temperatures. In this study, a mixed solvent extraction method with different polarities was developed to extract different components of bio-crude oil into three fractions. The obtained fractions were characterized by using gas chromatography and mass spectrometry (GC-MS). The effect of temperature on the production of bio-oil and on the chemical distribution in bio-oil was examined. The maximum bio-oil yield (71.20%) was obtained at 873 K for bio-oil produced from softwood (Spruce). In contrast, at a temperature of 773 K, the bio-oil yields were 62.50% and 65.40% for bio-oil obtained from hardwood (Populus) and softwood (Spruce) respectively. More phenolic compounds were extracted at a temperature of 773 K for bio-oil derived from softwood (Spruce) whereas the bio-oil obtained from hardwood (Populus) produced mostly furans, acids and sugar compounds at this temperature. For both types of bio-oil, a wide variety of chemical groups were identified at a temperature of 873 K in comparison to 773 K.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Hojatisaeidi, F.; Mureddu, M.; Dessì, F.; Durand, G.; Saha, B;doi: 10.3390/en13030549
Porous boron nitride is a new class of solid adsorbent with applications in CO2 capture. In order to further enhance the adsorption capacities of materials, new strategies such as porosity tuning, element doping and surface modification have been taken into account. In this work, metal-free modification of porous boron nitride (BN) has been prepared by a structure directing agent via simple heat treatment under N2 flow. We have demonstrated that textural properties of BN play a pivotal role in CO2 adsorption behavior. Therefore, addition of a triblock copolymer surfactant (P123) has been adopted to improve the pore ordering and textural properties of porous BN and its influence on the morphological and structural properties of pristine BN has been characterized. The obtained BN-P123 exhibits a high surface area of 476 m2/g, a large pore volume of 0.83 cm3/g with an abundance of micropores. More importantly, after modification with P123 copolymer, the capacity of pure CO2 on porous BN has improved by about 34.5% compared to pristine BN (2.69 mmol/g for BN-P123 vs. 2.00 mmol/g for pristine BN under ambient condition). The unique characteristics of boron nitride opens up new routes for designing porous BN, which could be employed for optimizing CO2 adsorption.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/549/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/549/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Mamdouh A. Gadalla; Mamdouh A. Gadalla; Basudeb Saha; O Aboelazayem; O Aboelazayem;In this study, valorisation of high acid value waste cooking oil into biodiesel has been investigated. Non-catalytic transesterification using supercritical methanol has been used for biodiesel production. Four controllable independent process variables have been considered for analysis including methanol to oil (M:O) molar ratio, temperature, pressure and time. Uncommon effects of process variables on the reaction responses, e.g. biodiesel and glycerol yields, have been observed and extensively discussed. Response surface methodology (RSM) via Central Composite Design (CCD) has been used to analyse the effect of the process variables and their interactions on the reaction responses. A quadratic model for each response has been developed representing the interrelationships between process variables and responses. Analysis of Variance (ANOVA) has been used to verify the significance effect of each process variable and their interactions on reaction responses. Optimal reaction conditions have been predicted using RSM for 98% and 2.05% of biodiesel and glycerol yields, respectively at 25:1 M:O molar ratio, 265oC temperature, 110 bar pressure and 20 minutes reaction time. The predicted optimal conditions have been validated experimentally resulting in 98.82% biodiesel yield, representing 0.83% relative error. The quality of the produced biodiesel showed excellent agreement with the European biodiesel standard (EN14214).
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Authors: Omar Aboelazayem; Mamdouh Gadalla; Basudeb Saha;doi: 10.3390/en15103766
Biodiesel has been established as a promising alternative fuel to petroleum diesel. This study offers a promising energy conversion platform to valorise high acidity waste cooking oil (WCO) into biodiesel in a single-step reaction via supercritical methanol. Carbon dioxide (CO2) has been used as a co-solvent in the reaction with a catalytic effect to enhance the production of biodiesel. This work provides an in-depth assessment of the yield of four fatty acids methyl esters (FAME) from their correspondent triglycerides and fatty acids. The effects of four independent process variables, i.e., methanol to oil (M:O) molar ratio, temperature, pressure, and time, have been investigated using Response Surface Methodology (RSM). Four quadratic models have been developed between process variables and the yield of FAMEs. The statistical validation of the predicted models has been performed using analysis of variance (ANOVA). Numerical optimisation has been employed to predict the optimal conditions for biodiesel production. The predicted optimal conditions are at 25:1 M:O molar ratio, 254.7 °C, 110 bar within 17 min resulting in 99.2%, 99.3%, 99.13%, and 99.05% of methyl-oleate, methyl-palmitate, methyl-linoleate, and methyl-stearate yields, respectively. The predicted optimum conditions have been validated experimentally.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3766/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3766/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 United KingdomPublisher:Elsevier BV Haigh, K.F.; Vladisavljević, G.T.; Reynolds, J.C.; Nagy, Z.; Saha, B.;AbstractThe pre-treatment of used cooking oil (UCO) for the preparation of biodiesel has been investigated using Novozyme 435, Candida antarctica Lipase B immobilised on acrylic resin, as the catalyst. The reactions in UCO were carried out using a jacketed batch reactor with a reflux condenser. The liquid chromatography–mass spectrometry (LC–MS) method was developed to monitor the mono-, di- and triglyceride concentrations and it was found that the method was sensitive enough to separate isomers, including diglyceride isomers. It was found that the 1,3 diglyceride isomer reacted more readily than the 1,2 isomer indicating stereoselectivity of the catalyst. This work showed that Novozyme 435 will catalyse the esterification of free fatty acids (FFAs) and the transesterification of mono- and diglycerides typically found in UCO when Novozyme 435 is used to catalyse the pre-treatment of UCO for the formation of biodiesel. A kinetic model was used to investigate the mechanism and indicated that the reaction progressed with the sequential hydrolysis esterification reactions in parallel with transesterification.
Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefChemical Engineering Research and DesignArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefChemical Engineering Research and DesignArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Onyenkeadi, V; Aboelazayem, O; Saha, B;© 2019 The synthesis of butylene carbonate (BC) through the reaction of butylene oxide (BO) and carbon dioxide (CO 2 ) has been investigated using highly efficient graphene-inorganic heterogeneous catalyst, cerium-lanthana-zirconia and graphene oxide represented as Ce–La–Zr–GO nanocomposite. The systematic multivariate optimisation of BC synthesis via CO 2 utilisation using graphene-inorganic nanocomposite has been developed using Box-Behnken Design (BBD) of Response Surface Methodology (RSM). The BBD has been applied to optimise the single and interactive effect of four independent reaction variables, i.e. reaction temperature, pressure, catalyst loading and reaction time on the conversion of BO and BC yield. Two quadratic regression models have been developed representing an empirical relationship between each reaction response and all the independent variables. The predicted models have been validated statistically and experimentally, where a high agreement has been observed between predicted and experimental results with approximate relative errors of ±1.45% and ±1.52% for both the BO conversion and BC yield, respectively. The implementation of RSM optimisation process for the conversion of BC through the reaction between BO and CO 2 , has offered a new direction in green chemical process in terms of waste reduction, maximising production of value-added chemicals and effectively utilise CO 2 gas emissions.
Catalysis Today arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Catalysis Today arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Authors: Sumaiya Zainal Abidin; Misbahu Ladan Mohammed; Basudeb Saha;This study focuses on the development of a novel two-stage (esterification–transesterification) synthesis of biodiesel from used cooking oil (UCO) using ion exchange resins as catalysts. Esterification of the UCO has been conducted using various types of ion exchange resin catalysts. Purolite D5081, a hyper cross-linked resin, showed the best catalytic performance among all the catalysts investigated, with 92% of free fatty acid (FFA) conversion. The transesterification of pre-treated used cooking oil (P-UCO) was carried out sequentially using several acidic and basic ion exchange resin catalysts. In the screening process, the Diaion PA306s catalyst showed the best catalytic performance and was selected for the optimisation study. A triglyceride conversion of ca. 75% was recorded at the optimum reaction conditions (9% (w/w) catalyst loading, 328 K reaction temperature, 18:1 methanol to P-UCO feed mole ratio, and 350 rpm stirring speed). Furthermore, the reusability study of the Diaion PA306s catalyst gave a similar triglyceride conversion after a couple of cycles without losing its catalytic activity. A dry purification technique was found to give the lowest percentage of glycerides and glycerine content and, therefore, was chosen as the best biodiesel purification route.
Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/8/1209/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/8/1209/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
