- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Springer Science and Business Media LLC Joachim Claudet; Jessica Blythe; David A. Gill; Nathan J. Bennett; Georgina G. Gurney; Louisa Evans; Shauna L. Mahajan; Rachel A. Turner; Gabby N. Ahmadia; Natalie C. Ban; Graham Epstein; Stacy D. Jupiter; Jacqueline Lau; Sangeeta Mangubhai; Noelia Zafra-Calvo; Natali Lazzari; Jacopo A. Baggio; Miranda L. Bernard; Victor Brun; Stephanie D’Agata; Antonio Di Franco; Rebecca Horan; Josheena Naggea;This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41559-024-02417-5. Deposited by shareyourpaper.org and openaccessbutton.org. We've taken reasonable steps to ensure this content doesn't violate copyright. However, if you think it does you can request a takedown by emailing help@openaccessbutton.org.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 Spain, France, United StatesPublisher:Wiley Nyawira A. Muthiga; Tim R. McClanahan; Joseph Maina; Stephanie D’agata; Stephanie D’agata; Vardhan Patankar; Pagu Julius; Stacy D. Jupiter; Emily S. Darling; Austin T. Humphries; January Ndagala; Rohan Arthur; Sangeeta Mangubhai; Mireille Guillaume; Shaun K. Wilson; Ali M. Ussi; Julien Leblond; George Shedrawi; Gabriel Grimsditch;doi: 10.1111/geb.13191
handle: 10261/221327
AbstractAimPredictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range.LocationWestern Indo‐Pacific and Central Indo‐Pacific Ocean Realms.Major taxa studiedZooxanthellate Scleractinia – hard corals.MethodsWe evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness.ResultsGeographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress.Main conclusionsSimple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type 2013 France, France, France, France, France, Australia, France, France, FrancePublisher:Elsevier BV Trevor Hutton; Valeriano Parravicini; Ashley J. Williams; Martine Rodier; Martine Rodier; Adrian Flynn; Graham J. Edgar; Piers K. Dunstan; Daniela M. Ceccarelli; Laurent Wantiez; Laurent Vigliola; David Mouillot; Robert A. Campbell; Christophe E. Menkès; Christophe E. Menkès; Tim Skewes; Serge Andréfouët; Jock W. Young; Valerie Allain; Sarah Samadi; Daniel C. Gledhill; Steven Swearer; Claude Payri; Ken Ridgway; Catherine M. Dichmont; Cécile Dupouy; A. David McKinnon; Richard Brinkman; Philippe Borsa; Mike Cappo; Miles Furnas; Rodrigo H. Bustamante; Dhugal J. Lindsay; Yves Letourneur; Bernard Pelletier; Anthony J. Richardson; Anthony J. Richardson; Alan Williams; Nicholas J. Bax; Nicholas J. Bax; R. Farman; Stephanie D’agata; Bertrand Richer de Forges; Michel Kulbicki; Sophie Cravatte; Sophie Cravatte; Robin J. Beaman; Claire Garrigue; David S. Schoeman;pmid: 24182902
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, United States, SpainPublisher:Inter-Research Science Center Funded by:NSERCNSERCJulius Pagu; George Shedrawi; Joseph Maina; Rohan Arthur; Rohan Arthur; Nyawira A. Muthiga; Sangeeta Mangubhai; Tim R. McClanahan; Emily S. Darling; Emily S. Darling; Shaun K. Wilson; Mireille Guillaume; Stacy D. Jupiter; Austin T. Humphries; Stephanie D’agata; Stephanie D’agata; Julien Leblond; Gabriel Grimsditch; Vardhan Patankar; Vardhan Patankar; Ali M. Ussi;doi: 10.3354/meps13402
handle: 10261/220480
Complex histories of chronic and acute sea surface temperature (SST) stresses are expected to trigger taxon- and location-specific responses that will ultimately lead to novel coral communities. The 2016 El Niño-Southern Oscillation provided an opportunity to examine large-scale and recent environmental histories on emerging patterns in 226 coral communities distributed across 12 countries from East Africa to Fiji. Six main coral communities were identified that largely varied across a gradient of Acropora to massive Porites dominance. Bleaching intensity was taxon-specific and was associated with complex interactions among the 20 environmental variables that we examined. Coral community structure was better aligned with the historical temperature patterns between 1985 and 2015 than the 2016 extreme temperature event. Additionally, bleaching responses observed during 2016 differed from historical reports during past warm years. Consequently, coral communities present in 2016 are likely to have been reorganized by both long-term community change and acclimation mechanisms. For example, less disturbed sites with cooler baseline temperatures, higher mean historical SST background variability, and infrequent extreme warm temperature stresses were associated with Acropora-dominated communities, while more disturbed sites with lower historical SST background variability and frequent acute warm stress were dominated by stress-resistant massive Porites corals. Overall, the combination of taxon-specific responses, community-level reorganization over time, geographic variation, and multiple environmental stressors suggest complex responses and a diversity of future coral communities that can help contextualize management priorities and activities.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, Australia, Australia, Australia, France, France, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., ARC | ARC Centres of Excellence..., FCT | LA 1ARC| Future Fellowships - Grant ID: FT160100047 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020 ,FCT| LA 1Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2023 France, AustraliaPublisher:Springer Science and Business Media LLC Joseph Maina; Ernest Frimpong Asamoah; Stéphanie D'Agata; Majambo Gamoyo; PERCY RAKOTO; Rushingisha George; Jacob Ochiewo; Dinis Juízo; Jared O. Bosire;Abstract Subsistence-oriented communities in tropical coastal areas face the greatest threat from climate change, with consequences manifesting through diminishing returns from small-scale fishing and farming ventures. The complementary climate, sustainable development, and biodiversity conservation policies target reducing climate risks, but effective policy outcomes depend on a thorough understanding of system-wide climate risk, community adaptation potential and gaps, and possible economic losses. Using four countries in the Western Indian Ocean (WIO) region as a case, we present a framework for quantifying climate risk to subsistence-oriented coastal communities. On average, economic losses of ecosystem services are predicted to increase with increasing climate risk, with annual losses of up to 23% and 32% of total economic value (~ US$ 516,828,468/year) under SSP2-4.5 and SSP5-8.5 scenarios by 2050, respectively. A comprehensive assessment of climate risks, ecosystem service value and cost of climate inaction can inform policy actions aimed at adapting, mitigating, and compensating for the loss and damage caused by climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerQueensland University of Technology: QUT ePrintsReport . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3583708/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerQueensland University of Technology: QUT ePrintsReport . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3583708/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:American Association for the Advancement of Science (AAAS) Luisa Fontoura; Stephanie D’Agata; Majambo Gamoyo; Diego R. Barneche; Osmar J. Luiz; Elizabeth M. P. Madin; Linda Eggertsen; Joseph M. Maina;pmid: 35050678
The global decline of coral reefs has led to calls for strategies that reconcile biodiversity conservation and fisheries benefits. Still, considerable gaps in our understanding of the spatial ecology of ecosystem services remain. We combined spatial information on larval dispersal networks and estimates of human pressure to test the importance of connectivity for ecosystem service provision. We found that reefs receiving larvae from highly connected dispersal corridors were associated with high fish species richness. Generally, larval “sinks” contained twice as much fish biomass as “sources” and exhibited greater resilience to human pressure when protected. Despite their potential to support biodiversity persistence and sustainable fisheries, up to 70% of important dispersal corridors, sinks, and source reefs remain unprotected, emphasizing the need for increased protection of networks of well-connected reefs.
HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abg4351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abg4351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Luisa Fontoura; Osmar J. Luiz; Kyle J. A. Zawada; Kyle J. A. Zawada; Andrew H. Baird; Maria Dornelas; Joseph Maina; Mariana Álvarez-Noriega; Joshua S. Madin; Rachael M. Woods; Stephanie D’agata; Stephanie D’agata; Nader Boutros; Elizabeth M. P. Madin; Damaris Torres-Pulliza; Oscar Pizarro;doi: 10.1111/gcb.14911
pmid: 31697006
AbstractRapid intensification of environmental disturbances has sparked widespread decline and compositional shifts in foundation species in ecosystems worldwide. Now, an emergent challenge is to understand the consequences of shifts and losses in such habitat‐forming species for associated communities and ecosystem processes. Recently, consecutive coral bleaching events shifted the morphological makeup of habitat‐forming coral assemblages on the Great Barrier Reef (GBR). Considering the disparity of coral morphological growth forms in shelter provision for reef fishes, we investigated how shifts in the morphological structure of coral assemblages affect the abundance of juvenile and adult reef fishes. We used a temporal dataset from shallow reefs in the northern GBR to estimate coral convexity (a fine‐scale quantitative morphological trait) and two widely used coral habitat descriptors (coral cover and reef rugosity) for disentangling the effects of coral morphology on reef fish assemblages. Changes in coral convexity, rather than live coral cover or reef rugosity, disproportionately affected juvenile reef fishes when compared to adults, and explained more than 20% of juvenile decline. The magnitude of this effect varied by fish body size with juveniles of small‐bodied species showing higher vulnerability to changes in coral morphology. Our findings suggest that continued large‐scale shifts in the relative abundance of morphological groups within coral assemblages are likely to affect population replenishment and dynamics of future reef fish communities. The different responses of juvenile and adult fishes according to habitat descriptors indicate that focusing on coarse‐scale metrics alone may mask fine‐scale ecological responses that are key to understand ecosystem functioning and resilience. Nonetheless, quantifying coral morphological traits may contribute to forecasting the structure of reef fish communities on novel reef ecosystems shaped by climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Australia, United Kingdom, Australia, France, France, Australia, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1David A. Feary; Sebastian C. A. Ferse; Andrew S. Hoey; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil; Katherine E. Holmes; David Mouillot; David Mouillot; Joseph Maina; Joseph Maina; Joseph Maina; Charlie Gough; Edward H. Allison; Pascale Chabanet; Tim R. McClanahan; Rick D. Stuart-Smith; Stuart Campbell; Joshua E. Cinner; Graham J. Edgar; Shaun K. Wilson; U. Rashid Sumaila; Eran Brokovich; Stuart A. Sandin; Marah J. Hardt; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; Christina C. Hicks; Christina C. Hicks; Christina C. Hicks; Ivor D. Williams; Michel Kulbicki; Andrew J. Brooks; Larry B. Crowder; Alison Green; Cindy Huchery; Eva Maire; Eva Maire; Maria Beger; Laurent Wantiez; Laurent Vigliola; Juan J. Cruz-Motta; Camilo Mora; Nicholas A. J. Graham; Nicholas A. J. Graham; Alan M. Friedlander; Mark Tupper;doi: 10.1038/nature18607
pmid: 27309809
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Stephanie D’agata; Emily S. Darling; Emily S. Darling;pmid: 28118591
Sustainable fisheries must ultimately reduce poverty while maintaining ecosystem productivity. On coral reefs, managing for 'concave' trophic pyramids might be a win-win for people and ecosystems, by providing higher-value fisheries and maintaining important ecological functions.
Current Biology arrow_drop_down Current BiologyArticle . 2017 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.12.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Current Biology arrow_drop_down Current BiologyArticle . 2017 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.12.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Springer Science and Business Media LLC Joachim Claudet; Jessica Blythe; David A. Gill; Nathan J. Bennett; Georgina G. Gurney; Louisa Evans; Shauna L. Mahajan; Rachel A. Turner; Gabby N. Ahmadia; Natalie C. Ban; Graham Epstein; Stacy D. Jupiter; Jacqueline Lau; Sangeeta Mangubhai; Noelia Zafra-Calvo; Natali Lazzari; Jacopo A. Baggio; Miranda L. Bernard; Victor Brun; Stephanie D’Agata; Antonio Di Franco; Rebecca Horan; Josheena Naggea;This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41559-024-02417-5. Deposited by shareyourpaper.org and openaccessbutton.org. We've taken reasonable steps to ensure this content doesn't violate copyright. However, if you think it does you can request a takedown by emailing help@openaccessbutton.org.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 Spain, France, United StatesPublisher:Wiley Nyawira A. Muthiga; Tim R. McClanahan; Joseph Maina; Stephanie D’agata; Stephanie D’agata; Vardhan Patankar; Pagu Julius; Stacy D. Jupiter; Emily S. Darling; Austin T. Humphries; January Ndagala; Rohan Arthur; Sangeeta Mangubhai; Mireille Guillaume; Shaun K. Wilson; Ali M. Ussi; Julien Leblond; George Shedrawi; Gabriel Grimsditch;doi: 10.1111/geb.13191
handle: 10261/221327
AbstractAimPredictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range.LocationWestern Indo‐Pacific and Central Indo‐Pacific Ocean Realms.Major taxa studiedZooxanthellate Scleractinia – hard corals.MethodsWe evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness.ResultsGeographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress.Main conclusionsSimple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type 2013 France, France, France, France, France, Australia, France, France, FrancePublisher:Elsevier BV Trevor Hutton; Valeriano Parravicini; Ashley J. Williams; Martine Rodier; Martine Rodier; Adrian Flynn; Graham J. Edgar; Piers K. Dunstan; Daniela M. Ceccarelli; Laurent Wantiez; Laurent Vigliola; David Mouillot; Robert A. Campbell; Christophe E. Menkès; Christophe E. Menkès; Tim Skewes; Serge Andréfouët; Jock W. Young; Valerie Allain; Sarah Samadi; Daniel C. Gledhill; Steven Swearer; Claude Payri; Ken Ridgway; Catherine M. Dichmont; Cécile Dupouy; A. David McKinnon; Richard Brinkman; Philippe Borsa; Mike Cappo; Miles Furnas; Rodrigo H. Bustamante; Dhugal J. Lindsay; Yves Letourneur; Bernard Pelletier; Anthony J. Richardson; Anthony J. Richardson; Alan Williams; Nicholas J. Bax; Nicholas J. Bax; R. Farman; Stephanie D’agata; Bertrand Richer de Forges; Michel Kulbicki; Sophie Cravatte; Sophie Cravatte; Robin J. Beaman; Claire Garrigue; David S. Schoeman;pmid: 24182902
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, United States, SpainPublisher:Inter-Research Science Center Funded by:NSERCNSERCJulius Pagu; George Shedrawi; Joseph Maina; Rohan Arthur; Rohan Arthur; Nyawira A. Muthiga; Sangeeta Mangubhai; Tim R. McClanahan; Emily S. Darling; Emily S. Darling; Shaun K. Wilson; Mireille Guillaume; Stacy D. Jupiter; Austin T. Humphries; Stephanie D’agata; Stephanie D’agata; Julien Leblond; Gabriel Grimsditch; Vardhan Patankar; Vardhan Patankar; Ali M. Ussi;doi: 10.3354/meps13402
handle: 10261/220480
Complex histories of chronic and acute sea surface temperature (SST) stresses are expected to trigger taxon- and location-specific responses that will ultimately lead to novel coral communities. The 2016 El Niño-Southern Oscillation provided an opportunity to examine large-scale and recent environmental histories on emerging patterns in 226 coral communities distributed across 12 countries from East Africa to Fiji. Six main coral communities were identified that largely varied across a gradient of Acropora to massive Porites dominance. Bleaching intensity was taxon-specific and was associated with complex interactions among the 20 environmental variables that we examined. Coral community structure was better aligned with the historical temperature patterns between 1985 and 2015 than the 2016 extreme temperature event. Additionally, bleaching responses observed during 2016 differed from historical reports during past warm years. Consequently, coral communities present in 2016 are likely to have been reorganized by both long-term community change and acclimation mechanisms. For example, less disturbed sites with cooler baseline temperatures, higher mean historical SST background variability, and infrequent extreme warm temperature stresses were associated with Acropora-dominated communities, while more disturbed sites with lower historical SST background variability and frequent acute warm stress were dominated by stress-resistant massive Porites corals. Overall, the combination of taxon-specific responses, community-level reorganization over time, geographic variation, and multiple environmental stressors suggest complex responses and a diversity of future coral communities that can help contextualize management priorities and activities.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, Australia, Australia, Australia, France, France, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., ARC | ARC Centres of Excellence..., FCT | LA 1ARC| Future Fellowships - Grant ID: FT160100047 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020 ,FCT| LA 1Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2023 France, AustraliaPublisher:Springer Science and Business Media LLC Joseph Maina; Ernest Frimpong Asamoah; Stéphanie D'Agata; Majambo Gamoyo; PERCY RAKOTO; Rushingisha George; Jacob Ochiewo; Dinis Juízo; Jared O. Bosire;Abstract Subsistence-oriented communities in tropical coastal areas face the greatest threat from climate change, with consequences manifesting through diminishing returns from small-scale fishing and farming ventures. The complementary climate, sustainable development, and biodiversity conservation policies target reducing climate risks, but effective policy outcomes depend on a thorough understanding of system-wide climate risk, community adaptation potential and gaps, and possible economic losses. Using four countries in the Western Indian Ocean (WIO) region as a case, we present a framework for quantifying climate risk to subsistence-oriented coastal communities. On average, economic losses of ecosystem services are predicted to increase with increasing climate risk, with annual losses of up to 23% and 32% of total economic value (~ US$ 516,828,468/year) under SSP2-4.5 and SSP5-8.5 scenarios by 2050, respectively. A comprehensive assessment of climate risks, ecosystem service value and cost of climate inaction can inform policy actions aimed at adapting, mitigating, and compensating for the loss and damage caused by climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerQueensland University of Technology: QUT ePrintsReport . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3583708/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerQueensland University of Technology: QUT ePrintsReport . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3583708/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:American Association for the Advancement of Science (AAAS) Luisa Fontoura; Stephanie D’Agata; Majambo Gamoyo; Diego R. Barneche; Osmar J. Luiz; Elizabeth M. P. Madin; Linda Eggertsen; Joseph M. Maina;pmid: 35050678
The global decline of coral reefs has led to calls for strategies that reconcile biodiversity conservation and fisheries benefits. Still, considerable gaps in our understanding of the spatial ecology of ecosystem services remain. We combined spatial information on larval dispersal networks and estimates of human pressure to test the importance of connectivity for ecosystem service provision. We found that reefs receiving larvae from highly connected dispersal corridors were associated with high fish species richness. Generally, larval “sinks” contained twice as much fish biomass as “sources” and exhibited greater resilience to human pressure when protected. Despite their potential to support biodiversity persistence and sustainable fisheries, up to 70% of important dispersal corridors, sinks, and source reefs remain unprotected, emphasizing the need for increased protection of networks of well-connected reefs.
HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abg4351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abg4351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Luisa Fontoura; Osmar J. Luiz; Kyle J. A. Zawada; Kyle J. A. Zawada; Andrew H. Baird; Maria Dornelas; Joseph Maina; Mariana Álvarez-Noriega; Joshua S. Madin; Rachael M. Woods; Stephanie D’agata; Stephanie D’agata; Nader Boutros; Elizabeth M. P. Madin; Damaris Torres-Pulliza; Oscar Pizarro;doi: 10.1111/gcb.14911
pmid: 31697006
AbstractRapid intensification of environmental disturbances has sparked widespread decline and compositional shifts in foundation species in ecosystems worldwide. Now, an emergent challenge is to understand the consequences of shifts and losses in such habitat‐forming species for associated communities and ecosystem processes. Recently, consecutive coral bleaching events shifted the morphological makeup of habitat‐forming coral assemblages on the Great Barrier Reef (GBR). Considering the disparity of coral morphological growth forms in shelter provision for reef fishes, we investigated how shifts in the morphological structure of coral assemblages affect the abundance of juvenile and adult reef fishes. We used a temporal dataset from shallow reefs in the northern GBR to estimate coral convexity (a fine‐scale quantitative morphological trait) and two widely used coral habitat descriptors (coral cover and reef rugosity) for disentangling the effects of coral morphology on reef fish assemblages. Changes in coral convexity, rather than live coral cover or reef rugosity, disproportionately affected juvenile reef fishes when compared to adults, and explained more than 20% of juvenile decline. The magnitude of this effect varied by fish body size with juveniles of small‐bodied species showing higher vulnerability to changes in coral morphology. Our findings suggest that continued large‐scale shifts in the relative abundance of morphological groups within coral assemblages are likely to affect population replenishment and dynamics of future reef fish communities. The different responses of juvenile and adult fishes according to habitat descriptors indicate that focusing on coarse‐scale metrics alone may mask fine‐scale ecological responses that are key to understand ecosystem functioning and resilience. Nonetheless, quantifying coral morphological traits may contribute to forecasting the structure of reef fish communities on novel reef ecosystems shaped by climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Australia, United Kingdom, Australia, France, France, Australia, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1David A. Feary; Sebastian C. A. Ferse; Andrew S. Hoey; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil; Katherine E. Holmes; David Mouillot; David Mouillot; Joseph Maina; Joseph Maina; Joseph Maina; Charlie Gough; Edward H. Allison; Pascale Chabanet; Tim R. McClanahan; Rick D. Stuart-Smith; Stuart Campbell; Joshua E. Cinner; Graham J. Edgar; Shaun K. Wilson; U. Rashid Sumaila; Eran Brokovich; Stuart A. Sandin; Marah J. Hardt; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; Christina C. Hicks; Christina C. Hicks; Christina C. Hicks; Ivor D. Williams; Michel Kulbicki; Andrew J. Brooks; Larry B. Crowder; Alison Green; Cindy Huchery; Eva Maire; Eva Maire; Maria Beger; Laurent Wantiez; Laurent Vigliola; Juan J. Cruz-Motta; Camilo Mora; Nicholas A. J. Graham; Nicholas A. J. Graham; Alan M. Friedlander; Mark Tupper;doi: 10.1038/nature18607
pmid: 27309809
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Stephanie D’agata; Emily S. Darling; Emily S. Darling;pmid: 28118591
Sustainable fisheries must ultimately reduce poverty while maintaining ecosystem productivity. On coral reefs, managing for 'concave' trophic pyramids might be a win-win for people and ecosystems, by providing higher-value fisheries and maintaining important ecological functions.
Current Biology arrow_drop_down Current BiologyArticle . 2017 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.12.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Current Biology arrow_drop_down Current BiologyArticle . 2017 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.12.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu