- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Dilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; +4 AuthorsDilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; Peter A. Y. Ampim; Mouhamed Ly; Pierre S. Traore; Samuel G. K. Adiku;doi: 10.3390/su13095191
handle: 10625/63326
Agriculture in West Africa is constrained by several yield-limiting factors, such as poor soil fertility, erratic rainfall distributions and low input systems. Projected changes in climate, thus, pose a threat since crop production is mainly rain-fed. The impact of climate change and its variation on the productivity of cereals in smallholder settings under future production systems in Navrongo, Ghana and Nioro du Rip, Senegal was assessed in this study. Data on management practices obtained from household surveys and projected agricultural development pathways (through stakeholder engagements), soil data, weather data (historical: 1980–2009 and five General Circulation Models; mid-century time slice 2040–2069 for two Representative Concentration Pathways; 4.5 and 8.5) were used for the impact assessment, employing a crop simulation model. Ensemble maize yield changes under the sustainable agricultural development pathway (SDP) were −13 and −16%, while under the unsustainable development pathway (USDP), yield changes were −19 and −20% in Navrongo and Nioro du Rip, respectively. The impact on sorghum and millet were lower than that on maize. Variations in climate change impact among smallholders were high with relative standard deviations (RSD) of between 14% and 60% across the cereals with variability being higher under the USDP, except for millet. Agricultural production systems with higher intensification but with less emphasis on soil conservation (USDP) will be more negatively impacted by climate change compared to relatively sustainable ones (SDP).
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Peter A. Y. Ampim; Eric Obeng; Ernesto Olvera-Gonzalez;As the world’s population is increasing exponentially, human diets have changed to less healthy foods resulting in detrimental health complications. Increasing vegetable intake by both rural and urban dwellers can help address this issue. However, these communities often face the challenge of limited vegetable supply and accessibility. More so, open field vegetable production cannot supply all the vegetable needs because biotic and abiotic stress factors often hinder production. Alternative approaches such as vegetable production in greenhouses, indoor farms, high tunnels, and screenhouses can help fill the gap in the supply chain. These alternative production methods provide opportunities to use less resources such as land space, pesticide, and water. They also make possible the control of production factors such as temperature, relative humidity, and carbon dioxide, as well as extension of the growing season. Some of these production systems also make the supply and distribution of nutrients to crops easier and more uniform to enhance crop growth and yield. This paper reviews these alternative vegetable production approaches which include hydroponics, aeroponics, aquaponics and soilless mixes to reveal the need for exploring them further to increase crop production. The paper also discusses facilities used, plant growth factors, current challenges including energy costs and prospects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Dilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; +4 AuthorsDilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; Peter A. Y. Ampim; Mouhamed Ly; Pierre S. Traore; Samuel G. K. Adiku;doi: 10.3390/su13095191
handle: 10625/63326
Agriculture in West Africa is constrained by several yield-limiting factors, such as poor soil fertility, erratic rainfall distributions and low input systems. Projected changes in climate, thus, pose a threat since crop production is mainly rain-fed. The impact of climate change and its variation on the productivity of cereals in smallholder settings under future production systems in Navrongo, Ghana and Nioro du Rip, Senegal was assessed in this study. Data on management practices obtained from household surveys and projected agricultural development pathways (through stakeholder engagements), soil data, weather data (historical: 1980–2009 and five General Circulation Models; mid-century time slice 2040–2069 for two Representative Concentration Pathways; 4.5 and 8.5) were used for the impact assessment, employing a crop simulation model. Ensemble maize yield changes under the sustainable agricultural development pathway (SDP) were −13 and −16%, while under the unsustainable development pathway (USDP), yield changes were −19 and −20% in Navrongo and Nioro du Rip, respectively. The impact on sorghum and millet were lower than that on maize. Variations in climate change impact among smallholders were high with relative standard deviations (RSD) of between 14% and 60% across the cereals with variability being higher under the USDP, except for millet. Agricultural production systems with higher intensification but with less emphasis on soil conservation (USDP) will be more negatively impacted by climate change compared to relatively sustainable ones (SDP).
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Peter A. Y. Ampim; Eric Obeng; Ernesto Olvera-Gonzalez;As the world’s population is increasing exponentially, human diets have changed to less healthy foods resulting in detrimental health complications. Increasing vegetable intake by both rural and urban dwellers can help address this issue. However, these communities often face the challenge of limited vegetable supply and accessibility. More so, open field vegetable production cannot supply all the vegetable needs because biotic and abiotic stress factors often hinder production. Alternative approaches such as vegetable production in greenhouses, indoor farms, high tunnels, and screenhouses can help fill the gap in the supply chain. These alternative production methods provide opportunities to use less resources such as land space, pesticide, and water. They also make possible the control of production factors such as temperature, relative humidity, and carbon dioxide, as well as extension of the growing season. Some of these production systems also make the supply and distribution of nutrients to crops easier and more uniform to enhance crop growth and yield. This paper reviews these alternative vegetable production approaches which include hydroponics, aeroponics, aquaponics and soilless mixes to reveal the need for exploring them further to increase crop production. The paper also discusses facilities used, plant growth factors, current challenges including energy costs and prospects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
