- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Hans Henrik Bruun; H. John B. Birks; H. John B. Birks; H. John B. Birks; Claes Bergendorff; Jonathan Lenoir; Fride Høistad Schei; Fride Høistad Schei; Ann Milbau; Jens-Christian Svenning; Martin Zobel; Mari Moora; Risto Virtanen; Martin Diekmann; John-Arvid Grytnes; Stefanie Reinhardt; Carl Johan Dahlberg; Liv Guri Velle; Bettina Nygaard; Sylvi M. Sandvik; Bente J. Graae; Jörg Brunet; Gunnar Austrheim; Miska Luoto; Kari Anne Bråthen; Vigdis Vandvik; Kari Klanderud; Kari Klanderud; James D. M. Speed; Arvid Odland; Virve Ravolainen; Rasmus Ejrnæs; Mats Dynesius; W. Scott Armbruster; Guillaume Decocq; Kristoffer Hylander; Inger Greve Alsos; Per Arild Aarrestad; Liv Unn Tveraabak;doi: 10.1111/gcb.12129
pmid: 23504984
AbstractRecent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km−1) than spatial turnover in growing‐season GiT (0.18 °C km−1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.216 citations 216 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2014Publisher:Wiley Funded by:NSERCNSERCMaarja Öpik; Pille Gerhold; Madis Metsis; John Davison; Meelis Pärtel; Inga Hiiesalu; Inga Hiiesalu; Martti Vasar; Martin Zobel; Mari Moora; Scott D. Wilson;doi: 10.1111/nph.12765
pmid: 24641509
Summary Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above‐ and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root‐colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454‐sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below‐ than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 275 citations 275 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Tanel Vahter; Alar Astover; John Davison; Inga Hiiesalu; Anne Ingver; Reine Koppel; Siqiao Liu; Evelin Loit‐Harro; Anne Luik; Jane Oja; Priit Penu; Siim‐Kaarel Sepp; Merili Simmer; Liina Talgre; Ilmar Tamm; Ülle Tamm; Martti Vasar; A. Y. Ayesh Piyara Wipulasena; Martin Zobel; Maarja Öpik;Summary This study investigates how agricultural disturbance influences arbuscular mycorrhizal (AM) fungal diversity, biomass, and community niche structure. Utilizing niche concepts, we show that the AM fungal communities in intensively managed soils exhibited larger niche volumes and an increased proportion of culturable taxa, which negatively impacted biomass production. This process was primarily driven by the reduction in specialist taxa, indicating a functional homogenization of the community. Intensively disturbed low‐biomass AM fungal communities were composed of species that can persist under low host abundance. Our findings reveal that intensive management disturbance significantly decreased AM fungal species richness and biomass simultaneously. Preserving AM fungal diversity is essential for maintaining their biomass and functionality, underscoring the detrimental effects of intensive agricultural practices on these critical soil organisms and their potential consequences for soil health and ecosystem functioning.
New Phytologist arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | LIFEPLAN, EC | BIODESERTEC| LIFEPLAN ,EC| BIODESERTTedersoo, Leho; Mikryukov, Vladimir; Zizka, Alexander; Bahram, Mohammad; Hagh-Doust, Niloufar; Anslan, Sten; Prylutskyi, Oleh; Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Pärn, Jaan; Öpik, Maarja; SOUDZILOVSKAIA, Nadejda; SOUDZILOVSKAIA, Nadejda; SOUDZILOVSKAIA, Nadejda; SOUDZILOVSKAIA, Nadejda; Antonelli, Alexandre; Kõljalg, Urmas; Abarenkov, Kessy; Moora, Mari; Zobel, Martin; Espenberg, Mikk; Mander, Ülo; Khalid, Abdul Nasir; Corrales, Adriana; Agan, Ahto; Vasco-Palacios, Aída-M.; Saitta, Alessandro; Rinaldi, Andrea C.; Verbeken, Annemieke; Sulistyo, Bobby P.; Tamgnoue, Boris; Furneaux, Brendan; Ritter, Camila Duarte; Nyamukondiwa, Casper; Sharp, Cathy; Marín, César; Gohar, Daniyal; Klavina, Darta; Sharmah, Dipon; Dai, Dong Qin; Nouhra, Eduardo; Biersma, Elisabeth Machteld; Rähn, Elisabeth; Cameron, Erin K.; De Crop, Eske; Otsing, Eveli; Davydov, Evgeny A.; Albornoz, Felipe E.; Brearley, Francis Q.; Buegger, Franz; Zahn, Geoffrey; Bonito, Gregory; Hiiesalu, Inga; Barrio, Isabel C.; Heilmann-Clausen, Jacob; Ankuda, Jelena; Kupagme, John Y.; Maciá-Vicente, Jose G.; Fovo, Joseph Djeugap; Geml, József; Alatalo, Juha M.; Alvarez-Manjarrez, Julieta; Põldmaa, Kadri; Runnel, Kadri; Adamson, Kalev; Bråthen, Kari Anne; Pritsch, Karin; Tchan, Kassim I.; Armolaitis, Kęstutis; Hyde, Kevin D.; Newsham, Kevin K.; Panksep, Kristel; Lateef, Adebola A.; Tiirmann, Liis; Hansson, Linda; Lamit, Louis J.; Saba, Malka; Tuomi, Maria; Gryzenhout, Marieka; Bauters, Marijn; Piepenbring, Meike; Wijayawardene, Nalin; Yorou, Nourou S; Kurina, Olavi; Mortimer, Peter E.; Meidl, Peter; Kohout, Petr; Nilsson, Henrik R.; Puusepp, Rasmus; Drenkhan, Rein; Garibay-Orijel, Roberto; Godoy, Roberto; Alkahtani, Saad; Rahimlou, Saleh; Dudov, Sergey V.; Põlme, Sergei; Ghosh, Soumya; Mundra, Sunil; Ahmed, Talaat; Netherway, Tarquin; Henkel, Terry W.; Roslin, Tomas; Nteziryayo, Vincent; Fedosov, Vladimir E.; Onipchenko, Vladimir G.; Yasanthika, W. A. Erandi; Lim, Young Woon; Tedersoo, Leho; Tedersoo, Leho;handle: 1942/40339
This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general. This repository contains the following data associated with the publication: Supplementary tables S1 - S6 (`Tables_S1-S6.xlsx`): - Table S1. Definition of ecoregions and assignment of samples to ecoregions - Table S2. GSMc dataset used for endemicity analyses - Table S3. Dataset used for modeling endemicity values - Table S4. Dataset used for calculating and mapping vulnerability scores - Table S5. Dataset used for calculating and mapping conservation value - Table S6. Additional funding sources by authors OTU distribution by samples and ecoregions (`Data_taxon_assignment_to ecoregions.xlsx`) Gridded maps: Conservation priorities for all fungi and fungal groups - ConservationPriority_AllFungi.tif - ConservationPriority_AM.tif - ConservationPriority_EcM.tif - ConservationPriority_Moulds.tif - ConservationPriority_NonEcMAgaricomycetes.tif - ConservationPriority_OHPs.tif - ConservationPriority_Pathogens.tif - ConservationPriority_Unicellular.tif - ConservationPriority_Yeasts.tif The average vulnerability of all fungi and fungal groups and the model uncertainty estimates - AverageVulnerability_AllFungi.tif - AverageVulnerability_AM.tif - AverageVulnerability_EcM.tif - AverageVulnerability_Moulds.tif - AverageVulnerability_NonEcMAgaricomycetes.tif - AverageVulnerability_OHPs.tif - AverageVulnerability_Pathogens.tif - AverageVulnerabilityUncertainty_AllFungi.tif - AverageVulnerabilityUncertainty_AM.tif - AverageVulnerabilityUncertainty_EcM.tif - AverageVulnerabilityUncertainty_Moulds.tif - AverageVulnerabilityUncertainty_NonEcMAgaricomycetes.tif - AverageVulnerabilityUncertainty_OHPs.tif - AverageVulnerabilityUncertainty_Pathogens.tif - AverageVulnerabilityUncertainty_Unicellular.tif - AverageVulnerabilityUncertainty_Yeasts.tif - AverageVulnerability_Unicellular.tif - AverageVulnerability_Yeasts.tif The relative importance of predicted vulnerability of all fungi - RelativeImportanceOfVulnerability_AllFungi.tif Vulnerability to drought, heat, and land cover change for all fungi - Vulnerability_AllFungi_Heat-Drought-LandCoverChange.tif - VulnerabilityUncertainty_AllFungi_Heat-Drought-LandCoverChange.tif Human footprint index based on the Land-Use Harmonisation (LUH2; Hurtt et al., 2020, doi:10.5194/gmd-13-5425-2020) - `LandCoverChange_1960-2015.tif` MD5 checksums for all files (`MD5.md5`) Fungal groups: - AM, arbuscular mycorrhizal fungi (including all Glomeromycota but excluding all Endogonomycetes) - EcM, ectomycorrhizal fungi (excluding dubious lineages) - NonEcMAgaricomycetes, non-EcM Agaricomycetes (mostly saprotrophic fungi with usually macroscopic fruiting bodies) - Moulds (including Mortierellales, Mucorales, Umbelopsidales and Aspergillaceae and Trichocomaceae of Eurotiales and Trichoderma of Hypocreales) - Putative pathogens (including plant, animal and fungal pathogens as primary or secondary lifestyles) - OHPs, opportunistic human parasites (excluding Mortierellales) - Yeasts (excluding dimorphic yeasts) - Unicellular, other unicellular (non-yeast) fungi (including chytrids, aphids, rozellids and other early-diverging fungal lineages) Detailed processing steps can be found here: https://github.com/Mycology-Microbiology-Center/Fungal_Endemicity_and_Vulnerability This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general.
ZENODO arrow_drop_down Flemish Research Information SpaceDatasetLicense: Dataset LicencesData sources: Flemish Research Information Spaceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 37visibility views 37 download downloads 51 Powered by
more_vert ZENODO arrow_drop_down Flemish Research Information SpaceDatasetLicense: Dataset LicencesData sources: Flemish Research Information Spaceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Wiley Publicly fundedTheodora Petanidou; Simon G. Potts; Stefan Klotz; Thomas Hickler; Marten Winter; Marten Winter; Jacobus C. Biesmeijer; Riccardo Bommarco; Oliver Schweiger; Thomas Tscheulin; Jane C. Stout; Philip E. Hulme; Catrin Westphal; Catrin Westphal; Josef Settele; Ingolf Kühn; Anders Nielsen; Gian-Reto Walther; Martin Zobel; Montserrat Vilà; Mari Moora; Ralf Ohlemüller; Petr Pyšek; Martin T. Sykes;Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2018Biological ReviewsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 275 citations 275 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 158visibility views 158 download downloads 224 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2018Biological ReviewsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2014Publisher:Public Library of Science (PLoS) Funded by:EC | PLANT FELLOWSEC| PLANT FELLOWSKadri Koorem; Annika Uibopuu; Martin Zobel; Mari Moora; Virve Sõber; Maarja Öpik; Antonio Gazol; Ülle Saks;Small-scale heterogeneity of abiotic and biotic factors is expected to play a crucial role in species coexistence. It is known that plants are able to concentrate their root biomass into areas with high nutrient content and also acquire nutrients via symbiotic microorganisms such as arbuscular mycorrhizal (AM) fungi. At the same time, little is known about the small-scale distribution of soil nutrients, microbes and plant biomass occurring in the same area. We examined small-scale temporal and spatial variation as well as covariation of soil nutrients, microbial biomass (using soil fatty acid biomarker content) and above- and belowground biomass of herbaceous plants in a natural herb-rich boreonemoral spruce forest. The abundance of AM fungi and bacteria decreased during the plant growing season while soil nutrient content rather increased. The abundance of all microbes studied also varied in space and was affected by soil nutrient content. In particular, the abundance of AM fungi was negatively related to soil phosphorus and positively influenced by soil nitrogen content. Neither shoot nor root biomass of herbaceous plants showed any significant relationship with variation in soil nutrient content or the abundance of soil microbes. Our study suggests that plants can compensate for low soil phosphorus concentration via interactions with soil microbes, most probably due to a more efficient symbiosis with AM fungi. This compensation results in relatively constant plant biomass despite variation in soil phosphorous content and in the abundance of AM fungi. Hence, it is crucial to consider both soil nutrient content and the abundance of soil microbes when exploring the mechanisms driving vegetation patterns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Funded by:DFG | German Centre for Integra..., EC | Biodiversa-plus, CF +1 projectsDFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Biodiversa-plus ,CF ,DFGTsipe Aavik; Triin Reitalu; Marianne Kivastik; Iris Reinula; Sabrina Träger; Evelyn Uuemaa; Marta Barberis; Arjen Biere; Sílvia Castro; Sara A. O. Cousins; Anikó Csecserits; Eleftherios Dariotis; Živa Fišer; Grzegorz Grzejszczak; Cuong Nguyen Huu; Kertu Hool; Hans Jacquemyn; Margaux Julien; Marcin Klisz; Alexander Kmoch; Nikos Krigas; Attila Lengyel; Michael Lenhard; Desalew M. Moges; Zuzana Münzbergová; Ülo Niinemets; Baudewijn Odé; Hana Pánková; Meelis Pärtel; Ricarda Pätsch; Theodora Petanidou; Jan Plue; Radosław Puchałka; Froukje Rienks; Ioulietta Samartza; Julie K. Sheard; Bojana Stojanova; Joachim P. Töpper; Georgios Tsoktouridis; Spas Uzunov; Martin Zobel;Abstract The distylous plant Primula veris has long served as a model species for studying heterostyly, that is the occurrence of multiple floral morphs within a population to ensure outcrossing. Habitat loss, reduced plant population sizes, and climate change have raised concerns about the impact of these factors on morph ratios and the related consequences on fitness of heterostylous species. We studied the deviation of floral morphs of P. veris from isoplethy (i.e. equal frequency) in response to plant population size, landscape context and climatic factors, based on a pan‐European citizen science campaign involving observations from 28 countries. In addition, we examined the relative frequency of morphs to determine whether landscape and climatic factors disrupt morph frequencies or whether a specific morph has an advantage over the other. Theory predicts equal frequencies of short‐styled S‐morphs and long‐styled L‐morphs in populations at equilibrium. However, data from >3000 populations showed a substantial morph deviation from isoplethy and a significant excess of S‐morphs (9% higher compared to L‐morphs). Deviation of morph frequency from equilibrium was substantially stronger in smaller populations and was not affected by morph identity. Higher summer precipitation and land use intensity were associated with an increased prevalence of S‐morphs. Five populations containing individuals exhibiting short homostyle phenotypes (with the style and anthers in low positions) were found. Genotyping of the individuals at CYP734A50 gene of the S locus, which determines the length of the style and the position of anthers of P. veris, revealed no mutations in this region. Our results based on an unprecedented geographic sampling suggest that changes in land use and climate may be responsible for non‐equilibrium morph frequencies. This large‐scale citizen science initiative sets foundations for future studies to clarify whether the unexpected excess of S‐morphs is due to partial intra‐morph compatibility, disruption of heterostyly or survival advantage of S‐morphs. Synthesis. Human‐induced environmental change may affect biodiversity indirectly through altering reproductive traits, which can also lead to reduced fitness and genetic diversity. Further research should consider the possible role of pollinators in mediating the ecological and evolutionary consequences of recent landscape and climatic shifts on plant reproductive traits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Proceedings of the National Academy of Sciences Funded by:NSF | Successional Dynamics and..., NSF | Jornada Basin LTER V: Lan..., NSF | LTER: Succession, Biodive... +6 projectsNSF| Successional Dynamics and Spatial Patterning in Ecosystems at the Prairie-Forest Border ,NSF| Jornada Basin LTER V: Landscape Linkages in Arid and Semiarid Ecosystems ,NSF| LTER: Succession, Biodiversity and Ecosystem Functioning at the Prairie-Forest Border ,UKRI| The Rothamsted Long - Term Experiments - National Capability ,NSF| LTER: Biodiversity, Disturbance and Ecosystem Functioning at the Prairie-Forest Border ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| Succession, Productivity, and Dynamics in Temperate Mixed Ecosystems in Minnesota ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| Biodiversity, Environmental Change and Ecosystem Functioning at the Prairie-Forest BoarderChristian Smit; Minghua Song; Martin Zobel; Martin Zobel; Lars Götzenberger; Miklós Kertész; Marc Estiarte; Meelis Pärtel; Meelis Pärtel; Gábor Ónodi; Enrique Valencia; Martin Stock; Francesco de Bello; Begoña Peco; Ricardo García-González; Jürgen Dengler; Carlos P. Carmona; Carlos P. Carmona; Wolfgang Schmidt; Romà Ogaya; Martin Schuetz; Roel van Klink; Norbert Juergens; Rob H. Marrs; Robin J. Pakeman; Robin J. Pakeman; Frédérique Louault; Ben A. Woodcock; Katja Klumpp; Anke Jentsch; Richard F. Pywell; Karsten Wesche; Josep Peñuelas; Jiří Danihelka; Daniel Gómez-García; Ute Schmiedel; Peter B. Adler; Peter B. Adler; Eric Garnier; Jan Lepš; Tomáš Herben; Iker Pardo; Hana Skálová; Marie Šmilauerová; Marie Šmilauerová; Thomas Galland; Marta Rueda; Ricardo Ibáñez; David J. Eldridge; Susan Harrison; Susan Harrison; Susan Harrison; James Val; Vigdis Vandvik; Vigdis Vandvik; David Ward; Anna E-Vojtkó; Susan K Wiser; Susan K Wiser; Petr Šmilauer; Truman P. Young; Fei-Hai Yu;pmid: 32900958
pmc: PMC7533703
Significance The stability of ecological communities under ongoing climate and land-use change is fundamental to the sustainable management of natural resources through its effect on critical ecosystem services. Biodiversity is hypothesized to enhance stability through compensatory effects (decreased synchrony between species). However, the relative importance and interplay between different biotic and abiotic drivers of stability remain controversial. By analyzing long-term data from natural and seminatural ecosystems across the globe, we found that the degree of synchrony among dominant species was the main driver of stability, rather than species richness per se. These biotic effects overrode environmental drivers, which influenced the stability of communities by modulating the effects of richness and synchrony.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: DIGITAL.CSICUniversity of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/88d813pdData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020License: unspecifiedData sources: University of Groningen Research PortalPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 193 citations 193 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 99 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: DIGITAL.CSICUniversity of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/88d813pdData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020License: unspecifiedData sources: University of Groningen Research PortalPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Review 2009Walther, Gian-Reto; Roques, Alain; Hulme, Philip; Sykes, Martin; Pyšek, Petr; Kuhn, Ingolf; Zobel, Martin; Bacher, Sven; Botta-Dukát, Zoltán; Bugmann, Harald; Czúcz, Bálint; Dauber, Jens; Hickler, Thomas; Jarošík, Vojtěch; Kenis, Marc; Klotz, Stefan; Minchin, Dan; Moora, Mari; Nentwig, Wolfgang; Ott, Jurgen; Panov, Vadim; Reineking, Björn; Robinet, Christelle; Semenchenko, Vitaliy; Solarz, Wojciech; Thuiller, Wilfried; Montserrat, Vila; Vohland, Katrin; Settele, Josef;Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates,fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species’ ranges and changing communities. Under these circumstances, management practices regarding the occurrence of ‘new’ species could range from complete eradication to tolerance and even consideration of the ‘new’ species as an enrichment of local biodiversity and key elements to maintain ecosystem services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:Elsevier BV Gian-Reto Walther; Björn Reineking; Jens Dauber; Thomas Hickler; Josef Settele; Wolfgang Nentwig; Alain Roques; Vojtěch Jarošík; Vojtěch Jarošík; Stefan Klotz; Bálint Czúcz; Wojciech Solarz; Mari Moora; V. P. Semenchenko; Wilfried Thuiller; Ingolf Kühn; Petr Pyšek; Petr Pyšek; Christelle Robinet; Zoltán Botta-Dukát; Marc Kenis; Jürgen Ott; Martin T. Sykes; Philip E. Hulme; Sven Bacher; Katrin Vohland; Harald Bugmann; Dan Minchin; Martin Zobel; Montserrat Vilà; Vadim E. Panov;pmid: 19712994
Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates, fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species' ranges and changing communities. Under these circumstances, management practices regarding the occurrence of 'new' species could range from complete eradication to tolerance and even consideration of the 'new' species as an enrichment of local biodiversity and key elements to maintain ecosystem services.
Trends in Ecology & ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTATrends in Ecology & EvolutionArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 1K citations 1,143 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 85visibility views 85 download downloads 69 Powered by
more_vert Trends in Ecology & ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTATrends in Ecology & EvolutionArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Hans Henrik Bruun; H. John B. Birks; H. John B. Birks; H. John B. Birks; Claes Bergendorff; Jonathan Lenoir; Fride Høistad Schei; Fride Høistad Schei; Ann Milbau; Jens-Christian Svenning; Martin Zobel; Mari Moora; Risto Virtanen; Martin Diekmann; John-Arvid Grytnes; Stefanie Reinhardt; Carl Johan Dahlberg; Liv Guri Velle; Bettina Nygaard; Sylvi M. Sandvik; Bente J. Graae; Jörg Brunet; Gunnar Austrheim; Miska Luoto; Kari Anne Bråthen; Vigdis Vandvik; Kari Klanderud; Kari Klanderud; James D. M. Speed; Arvid Odland; Virve Ravolainen; Rasmus Ejrnæs; Mats Dynesius; W. Scott Armbruster; Guillaume Decocq; Kristoffer Hylander; Inger Greve Alsos; Per Arild Aarrestad; Liv Unn Tveraabak;doi: 10.1111/gcb.12129
pmid: 23504984
AbstractRecent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km−1) than spatial turnover in growing‐season GiT (0.18 °C km−1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.216 citations 216 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2014Publisher:Wiley Funded by:NSERCNSERCMaarja Öpik; Pille Gerhold; Madis Metsis; John Davison; Meelis Pärtel; Inga Hiiesalu; Inga Hiiesalu; Martti Vasar; Martin Zobel; Mari Moora; Scott D. Wilson;doi: 10.1111/nph.12765
pmid: 24641509
Summary Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above‐ and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root‐colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454‐sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below‐ than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 275 citations 275 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Tanel Vahter; Alar Astover; John Davison; Inga Hiiesalu; Anne Ingver; Reine Koppel; Siqiao Liu; Evelin Loit‐Harro; Anne Luik; Jane Oja; Priit Penu; Siim‐Kaarel Sepp; Merili Simmer; Liina Talgre; Ilmar Tamm; Ülle Tamm; Martti Vasar; A. Y. Ayesh Piyara Wipulasena; Martin Zobel; Maarja Öpik;Summary This study investigates how agricultural disturbance influences arbuscular mycorrhizal (AM) fungal diversity, biomass, and community niche structure. Utilizing niche concepts, we show that the AM fungal communities in intensively managed soils exhibited larger niche volumes and an increased proportion of culturable taxa, which negatively impacted biomass production. This process was primarily driven by the reduction in specialist taxa, indicating a functional homogenization of the community. Intensively disturbed low‐biomass AM fungal communities were composed of species that can persist under low host abundance. Our findings reveal that intensive management disturbance significantly decreased AM fungal species richness and biomass simultaneously. Preserving AM fungal diversity is essential for maintaining their biomass and functionality, underscoring the detrimental effects of intensive agricultural practices on these critical soil organisms and their potential consequences for soil health and ecosystem functioning.
New Phytologist arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | LIFEPLAN, EC | BIODESERTEC| LIFEPLAN ,EC| BIODESERTTedersoo, Leho; Mikryukov, Vladimir; Zizka, Alexander; Bahram, Mohammad; Hagh-Doust, Niloufar; Anslan, Sten; Prylutskyi, Oleh; Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Pärn, Jaan; Öpik, Maarja; SOUDZILOVSKAIA, Nadejda; SOUDZILOVSKAIA, Nadejda; SOUDZILOVSKAIA, Nadejda; SOUDZILOVSKAIA, Nadejda; Antonelli, Alexandre; Kõljalg, Urmas; Abarenkov, Kessy; Moora, Mari; Zobel, Martin; Espenberg, Mikk; Mander, Ülo; Khalid, Abdul Nasir; Corrales, Adriana; Agan, Ahto; Vasco-Palacios, Aída-M.; Saitta, Alessandro; Rinaldi, Andrea C.; Verbeken, Annemieke; Sulistyo, Bobby P.; Tamgnoue, Boris; Furneaux, Brendan; Ritter, Camila Duarte; Nyamukondiwa, Casper; Sharp, Cathy; Marín, César; Gohar, Daniyal; Klavina, Darta; Sharmah, Dipon; Dai, Dong Qin; Nouhra, Eduardo; Biersma, Elisabeth Machteld; Rähn, Elisabeth; Cameron, Erin K.; De Crop, Eske; Otsing, Eveli; Davydov, Evgeny A.; Albornoz, Felipe E.; Brearley, Francis Q.; Buegger, Franz; Zahn, Geoffrey; Bonito, Gregory; Hiiesalu, Inga; Barrio, Isabel C.; Heilmann-Clausen, Jacob; Ankuda, Jelena; Kupagme, John Y.; Maciá-Vicente, Jose G.; Fovo, Joseph Djeugap; Geml, József; Alatalo, Juha M.; Alvarez-Manjarrez, Julieta; Põldmaa, Kadri; Runnel, Kadri; Adamson, Kalev; Bråthen, Kari Anne; Pritsch, Karin; Tchan, Kassim I.; Armolaitis, Kęstutis; Hyde, Kevin D.; Newsham, Kevin K.; Panksep, Kristel; Lateef, Adebola A.; Tiirmann, Liis; Hansson, Linda; Lamit, Louis J.; Saba, Malka; Tuomi, Maria; Gryzenhout, Marieka; Bauters, Marijn; Piepenbring, Meike; Wijayawardene, Nalin; Yorou, Nourou S; Kurina, Olavi; Mortimer, Peter E.; Meidl, Peter; Kohout, Petr; Nilsson, Henrik R.; Puusepp, Rasmus; Drenkhan, Rein; Garibay-Orijel, Roberto; Godoy, Roberto; Alkahtani, Saad; Rahimlou, Saleh; Dudov, Sergey V.; Põlme, Sergei; Ghosh, Soumya; Mundra, Sunil; Ahmed, Talaat; Netherway, Tarquin; Henkel, Terry W.; Roslin, Tomas; Nteziryayo, Vincent; Fedosov, Vladimir E.; Onipchenko, Vladimir G.; Yasanthika, W. A. Erandi; Lim, Young Woon; Tedersoo, Leho; Tedersoo, Leho;handle: 1942/40339
This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general. This repository contains the following data associated with the publication: Supplementary tables S1 - S6 (`Tables_S1-S6.xlsx`): - Table S1. Definition of ecoregions and assignment of samples to ecoregions - Table S2. GSMc dataset used for endemicity analyses - Table S3. Dataset used for modeling endemicity values - Table S4. Dataset used for calculating and mapping vulnerability scores - Table S5. Dataset used for calculating and mapping conservation value - Table S6. Additional funding sources by authors OTU distribution by samples and ecoregions (`Data_taxon_assignment_to ecoregions.xlsx`) Gridded maps: Conservation priorities for all fungi and fungal groups - ConservationPriority_AllFungi.tif - ConservationPriority_AM.tif - ConservationPriority_EcM.tif - ConservationPriority_Moulds.tif - ConservationPriority_NonEcMAgaricomycetes.tif - ConservationPriority_OHPs.tif - ConservationPriority_Pathogens.tif - ConservationPriority_Unicellular.tif - ConservationPriority_Yeasts.tif The average vulnerability of all fungi and fungal groups and the model uncertainty estimates - AverageVulnerability_AllFungi.tif - AverageVulnerability_AM.tif - AverageVulnerability_EcM.tif - AverageVulnerability_Moulds.tif - AverageVulnerability_NonEcMAgaricomycetes.tif - AverageVulnerability_OHPs.tif - AverageVulnerability_Pathogens.tif - AverageVulnerabilityUncertainty_AllFungi.tif - AverageVulnerabilityUncertainty_AM.tif - AverageVulnerabilityUncertainty_EcM.tif - AverageVulnerabilityUncertainty_Moulds.tif - AverageVulnerabilityUncertainty_NonEcMAgaricomycetes.tif - AverageVulnerabilityUncertainty_OHPs.tif - AverageVulnerabilityUncertainty_Pathogens.tif - AverageVulnerabilityUncertainty_Unicellular.tif - AverageVulnerabilityUncertainty_Yeasts.tif - AverageVulnerability_Unicellular.tif - AverageVulnerability_Yeasts.tif The relative importance of predicted vulnerability of all fungi - RelativeImportanceOfVulnerability_AllFungi.tif Vulnerability to drought, heat, and land cover change for all fungi - Vulnerability_AllFungi_Heat-Drought-LandCoverChange.tif - VulnerabilityUncertainty_AllFungi_Heat-Drought-LandCoverChange.tif Human footprint index based on the Land-Use Harmonisation (LUH2; Hurtt et al., 2020, doi:10.5194/gmd-13-5425-2020) - `LandCoverChange_1960-2015.tif` MD5 checksums for all files (`MD5.md5`) Fungal groups: - AM, arbuscular mycorrhizal fungi (including all Glomeromycota but excluding all Endogonomycetes) - EcM, ectomycorrhizal fungi (excluding dubious lineages) - NonEcMAgaricomycetes, non-EcM Agaricomycetes (mostly saprotrophic fungi with usually macroscopic fruiting bodies) - Moulds (including Mortierellales, Mucorales, Umbelopsidales and Aspergillaceae and Trichocomaceae of Eurotiales and Trichoderma of Hypocreales) - Putative pathogens (including plant, animal and fungal pathogens as primary or secondary lifestyles) - OHPs, opportunistic human parasites (excluding Mortierellales) - Yeasts (excluding dimorphic yeasts) - Unicellular, other unicellular (non-yeast) fungi (including chytrids, aphids, rozellids and other early-diverging fungal lineages) Detailed processing steps can be found here: https://github.com/Mycology-Microbiology-Center/Fungal_Endemicity_and_Vulnerability This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general.
ZENODO arrow_drop_down Flemish Research Information SpaceDatasetLicense: Dataset LicencesData sources: Flemish Research Information Spaceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 37visibility views 37 download downloads 51 Powered by
more_vert ZENODO arrow_drop_down Flemish Research Information SpaceDatasetLicense: Dataset LicencesData sources: Flemish Research Information Spaceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Wiley Publicly fundedTheodora Petanidou; Simon G. Potts; Stefan Klotz; Thomas Hickler; Marten Winter; Marten Winter; Jacobus C. Biesmeijer; Riccardo Bommarco; Oliver Schweiger; Thomas Tscheulin; Jane C. Stout; Philip E. Hulme; Catrin Westphal; Catrin Westphal; Josef Settele; Ingolf Kühn; Anders Nielsen; Gian-Reto Walther; Martin Zobel; Montserrat Vilà; Mari Moora; Ralf Ohlemüller; Petr Pyšek; Martin T. Sykes;Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2018Biological ReviewsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 275 citations 275 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 158visibility views 158 download downloads 224 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2018Biological ReviewsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2014Publisher:Public Library of Science (PLoS) Funded by:EC | PLANT FELLOWSEC| PLANT FELLOWSKadri Koorem; Annika Uibopuu; Martin Zobel; Mari Moora; Virve Sõber; Maarja Öpik; Antonio Gazol; Ülle Saks;Small-scale heterogeneity of abiotic and biotic factors is expected to play a crucial role in species coexistence. It is known that plants are able to concentrate their root biomass into areas with high nutrient content and also acquire nutrients via symbiotic microorganisms such as arbuscular mycorrhizal (AM) fungi. At the same time, little is known about the small-scale distribution of soil nutrients, microbes and plant biomass occurring in the same area. We examined small-scale temporal and spatial variation as well as covariation of soil nutrients, microbial biomass (using soil fatty acid biomarker content) and above- and belowground biomass of herbaceous plants in a natural herb-rich boreonemoral spruce forest. The abundance of AM fungi and bacteria decreased during the plant growing season while soil nutrient content rather increased. The abundance of all microbes studied also varied in space and was affected by soil nutrient content. In particular, the abundance of AM fungi was negatively related to soil phosphorus and positively influenced by soil nitrogen content. Neither shoot nor root biomass of herbaceous plants showed any significant relationship with variation in soil nutrient content or the abundance of soil microbes. Our study suggests that plants can compensate for low soil phosphorus concentration via interactions with soil microbes, most probably due to a more efficient symbiosis with AM fungi. This compensation results in relatively constant plant biomass despite variation in soil phosphorous content and in the abundance of AM fungi. Hence, it is crucial to consider both soil nutrient content and the abundance of soil microbes when exploring the mechanisms driving vegetation patterns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Funded by:DFG | German Centre for Integra..., EC | Biodiversa-plus, CF +1 projectsDFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Biodiversa-plus ,CF ,DFGTsipe Aavik; Triin Reitalu; Marianne Kivastik; Iris Reinula; Sabrina Träger; Evelyn Uuemaa; Marta Barberis; Arjen Biere; Sílvia Castro; Sara A. O. Cousins; Anikó Csecserits; Eleftherios Dariotis; Živa Fišer; Grzegorz Grzejszczak; Cuong Nguyen Huu; Kertu Hool; Hans Jacquemyn; Margaux Julien; Marcin Klisz; Alexander Kmoch; Nikos Krigas; Attila Lengyel; Michael Lenhard; Desalew M. Moges; Zuzana Münzbergová; Ülo Niinemets; Baudewijn Odé; Hana Pánková; Meelis Pärtel; Ricarda Pätsch; Theodora Petanidou; Jan Plue; Radosław Puchałka; Froukje Rienks; Ioulietta Samartza; Julie K. Sheard; Bojana Stojanova; Joachim P. Töpper; Georgios Tsoktouridis; Spas Uzunov; Martin Zobel;Abstract The distylous plant Primula veris has long served as a model species for studying heterostyly, that is the occurrence of multiple floral morphs within a population to ensure outcrossing. Habitat loss, reduced plant population sizes, and climate change have raised concerns about the impact of these factors on morph ratios and the related consequences on fitness of heterostylous species. We studied the deviation of floral morphs of P. veris from isoplethy (i.e. equal frequency) in response to plant population size, landscape context and climatic factors, based on a pan‐European citizen science campaign involving observations from 28 countries. In addition, we examined the relative frequency of morphs to determine whether landscape and climatic factors disrupt morph frequencies or whether a specific morph has an advantage over the other. Theory predicts equal frequencies of short‐styled S‐morphs and long‐styled L‐morphs in populations at equilibrium. However, data from >3000 populations showed a substantial morph deviation from isoplethy and a significant excess of S‐morphs (9% higher compared to L‐morphs). Deviation of morph frequency from equilibrium was substantially stronger in smaller populations and was not affected by morph identity. Higher summer precipitation and land use intensity were associated with an increased prevalence of S‐morphs. Five populations containing individuals exhibiting short homostyle phenotypes (with the style and anthers in low positions) were found. Genotyping of the individuals at CYP734A50 gene of the S locus, which determines the length of the style and the position of anthers of P. veris, revealed no mutations in this region. Our results based on an unprecedented geographic sampling suggest that changes in land use and climate may be responsible for non‐equilibrium morph frequencies. This large‐scale citizen science initiative sets foundations for future studies to clarify whether the unexpected excess of S‐morphs is due to partial intra‐morph compatibility, disruption of heterostyly or survival advantage of S‐morphs. Synthesis. Human‐induced environmental change may affect biodiversity indirectly through altering reproductive traits, which can also lead to reduced fitness and genetic diversity. Further research should consider the possible role of pollinators in mediating the ecological and evolutionary consequences of recent landscape and climatic shifts on plant reproductive traits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Proceedings of the National Academy of Sciences Funded by:NSF | Successional Dynamics and..., NSF | Jornada Basin LTER V: Lan..., NSF | LTER: Succession, Biodive... +6 projectsNSF| Successional Dynamics and Spatial Patterning in Ecosystems at the Prairie-Forest Border ,NSF| Jornada Basin LTER V: Landscape Linkages in Arid and Semiarid Ecosystems ,NSF| LTER: Succession, Biodiversity and Ecosystem Functioning at the Prairie-Forest Border ,UKRI| The Rothamsted Long - Term Experiments - National Capability ,NSF| LTER: Biodiversity, Disturbance and Ecosystem Functioning at the Prairie-Forest Border ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| Succession, Productivity, and Dynamics in Temperate Mixed Ecosystems in Minnesota ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| Biodiversity, Environmental Change and Ecosystem Functioning at the Prairie-Forest BoarderChristian Smit; Minghua Song; Martin Zobel; Martin Zobel; Lars Götzenberger; Miklós Kertész; Marc Estiarte; Meelis Pärtel; Meelis Pärtel; Gábor Ónodi; Enrique Valencia; Martin Stock; Francesco de Bello; Begoña Peco; Ricardo García-González; Jürgen Dengler; Carlos P. Carmona; Carlos P. Carmona; Wolfgang Schmidt; Romà Ogaya; Martin Schuetz; Roel van Klink; Norbert Juergens; Rob H. Marrs; Robin J. Pakeman; Robin J. Pakeman; Frédérique Louault; Ben A. Woodcock; Katja Klumpp; Anke Jentsch; Richard F. Pywell; Karsten Wesche; Josep Peñuelas; Jiří Danihelka; Daniel Gómez-García; Ute Schmiedel; Peter B. Adler; Peter B. Adler; Eric Garnier; Jan Lepš; Tomáš Herben; Iker Pardo; Hana Skálová; Marie Šmilauerová; Marie Šmilauerová; Thomas Galland; Marta Rueda; Ricardo Ibáñez; David J. Eldridge; Susan Harrison; Susan Harrison; Susan Harrison; James Val; Vigdis Vandvik; Vigdis Vandvik; David Ward; Anna E-Vojtkó; Susan K Wiser; Susan K Wiser; Petr Šmilauer; Truman P. Young; Fei-Hai Yu;pmid: 32900958
pmc: PMC7533703
Significance The stability of ecological communities under ongoing climate and land-use change is fundamental to the sustainable management of natural resources through its effect on critical ecosystem services. Biodiversity is hypothesized to enhance stability through compensatory effects (decreased synchrony between species). However, the relative importance and interplay between different biotic and abiotic drivers of stability remain controversial. By analyzing long-term data from natural and seminatural ecosystems across the globe, we found that the degree of synchrony among dominant species was the main driver of stability, rather than species richness per se. These biotic effects overrode environmental drivers, which influenced the stability of communities by modulating the effects of richness and synchrony.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: DIGITAL.CSICUniversity of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/88d813pdData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020License: unspecifiedData sources: University of Groningen Research PortalPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 193 citations 193 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 99 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: http://dx.doi.org/10.1073/pnas.1920405117Data sources: DIGITAL.CSICUniversity of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/88d813pdData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020License: unspecifiedData sources: University of Groningen Research PortalPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Review 2009Walther, Gian-Reto; Roques, Alain; Hulme, Philip; Sykes, Martin; Pyšek, Petr; Kuhn, Ingolf; Zobel, Martin; Bacher, Sven; Botta-Dukát, Zoltán; Bugmann, Harald; Czúcz, Bálint; Dauber, Jens; Hickler, Thomas; Jarošík, Vojtěch; Kenis, Marc; Klotz, Stefan; Minchin, Dan; Moora, Mari; Nentwig, Wolfgang; Ott, Jurgen; Panov, Vadim; Reineking, Björn; Robinet, Christelle; Semenchenko, Vitaliy; Solarz, Wojciech; Thuiller, Wilfried; Montserrat, Vila; Vohland, Katrin; Settele, Josef;Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates,fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species’ ranges and changing communities. Under these circumstances, management practices regarding the occurrence of ‘new’ species could range from complete eradication to tolerance and even consideration of the ‘new’ species as an enrichment of local biodiversity and key elements to maintain ecosystem services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:Elsevier BV Gian-Reto Walther; Björn Reineking; Jens Dauber; Thomas Hickler; Josef Settele; Wolfgang Nentwig; Alain Roques; Vojtěch Jarošík; Vojtěch Jarošík; Stefan Klotz; Bálint Czúcz; Wojciech Solarz; Mari Moora; V. P. Semenchenko; Wilfried Thuiller; Ingolf Kühn; Petr Pyšek; Petr Pyšek; Christelle Robinet; Zoltán Botta-Dukát; Marc Kenis; Jürgen Ott; Martin T. Sykes; Philip E. Hulme; Sven Bacher; Katrin Vohland; Harald Bugmann; Dan Minchin; Martin Zobel; Montserrat Vilà; Vadim E. Panov;pmid: 19712994
Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates, fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species' ranges and changing communities. Under these circumstances, management practices regarding the occurrence of 'new' species could range from complete eradication to tolerance and even consideration of the 'new' species as an enrichment of local biodiversity and key elements to maintain ecosystem services.
Trends in Ecology & ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTATrends in Ecology & EvolutionArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 1K citations 1,143 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 85visibility views 85 download downloads 69 Powered by
more_vert Trends in Ecology & ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTATrends in Ecology & EvolutionArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
