- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Italy, Denmark, United KingdomPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Italy, Italy, Germany, Netherlands, BelgiumPublisher:Oxford University Press (OUP) Gielen, B.; Calfapietra, C.; Lukac, M.; Wittig, V.E.; de Angelis, P.; Janssens, I.A.; Moscatelli, M.C.; Grego, S.; Cotrufo, M.F.; Godbold, D.; Hoosbeek, M.R.; Long, S.; Miglietta, F.; Polle, A.; Bernacchi, C.; Davey, P.A.; Ceulemans, R.; Scarascia-Mugnozza, G.;pmid: 16105807
handle: 20.500.14243/145403 , 10067/535870151162165141
A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO(2)]; 550 micromol mol(-1)) from planting through canopy closure using a free-air CO(2) enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in the second and third years, respectively. Partitioning of extra carbon (C) among C pools of different turnover rates is of critical interest; thus, we calculated net ecosystem productivity (NEP) to determine whether elevated atmospheric [CO(2)] will enhance net plantation C storage capacity. Free-air CO(2) enrichment increased net primary productivity (NPP) of all genotypes by 21% in the second year and by 26% in the third year, mainly because of an increase in the size of C pools with relatively slow turnover rates (i.e., wood). In all genotypes in the FACE treatment, more new soil C was added to the total soil C pool compared with the control treatment. However, more old soil C loss was observed in the FACE treatment compared with the control treatment, possibly due to a priming effect from newly incorporated root litter. FACE did not significantly increase NEP, probably as a result of this priming effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, France, Australia, Italy, France, Belgium, Spain, Spain, Australia, United Kingdom, Australia, Australia, SpainPublisher:Springer Science and Business Media LLC David T. Tissue; Markus Löw; Jeffrey M. Warren; Göran Wallin; Jonathan Bennie; Derek Eamus; Yusuke Onoda; Johan Uddling; David S. Ellsworth; Joana Zaragoza-Castells; Nicolas Martin-StPaul; Teis Nørgaard Mikkelsen; Craig V. M. Barton; Lucy Rowland; Maarten Op de Beeck; Jean-Marc Limousin; Patrick Meir; Han Wang; Maj-Lena Linderson; Oula Ghannoum; Jesse B. Nippert; Jeff W. G. Kelly; Alexandre Bosc; Alexandre Bosc; Kohei Koyama; Kohei Koyama; Teresa E. Gimeno; Troy W. Ocheltree; Sofia Baig; Qingmin Han; Lucas A. Cernusak; John E. Drake; Antonio Carlos Lola da Costa; Patrick J. Mitchell; Cate Macinins-Ng; Norma Salinas; Norma Salinas; Samantha A. Setterfield; Kouki Hikosaka; Lasse Tarvainen; M. S. J. Broadmeadow; Lisa Wingate; Remko A. Duursma; Lindsay B. Hutley; Víctor Resco de Dios; Alistair Rogers; Paolo De Angelis; Kihachiro Kikuzawa; Belinda E. Medlyn; Michael Freeman; Pasi Kolari; I. Colin Prentice; I. Colin Prentice; Damien Bonal; Sabine Tausz-Posch; Wei Sun; Yan-Shih Lin; Ana Rey;doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2, 3. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate. This research was supported by the Australian Research Council (ARC MIA Discovery Project 1433500-2012-14). A.R. was financially supported in part by The Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. M.O.d.B. acknowledges that the Brassica data were obtained within a research project financed by the Belgian Science Policy (OFFQ, contract number SD/AF/02) and coordinated by K. Vandermeiren at the Open-Top Chamber research facilities of CODA-CERVA (Tervuren, Belgium).
Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Portugal, Italy, Germany, Portugal, Portugal, ItalyPublisher:Wiley Funded by:EC | ACQWA, EC | MOTIVE, EC | CARBO-EXTREMEEC| ACQWA ,EC| MOTIVE ,EC| CARBO-EXTREMELouis François; Philipp Gloning; Annett Wolf; Francesca De Lorenzi; M. Riccardi; Thomas Kuster; Georg Niedrist; Paolo De Angelis; Renée Abou Jaoudé; Georg Wohlfahrt; Giovanbattista de Dato; Anja Rammig; Tamir Klein; Christopher P. O. Reyer; Sebastian Leuzinger; Sebastian Leuzinger; Sebastian Leuzinger; Antonello Bonfante; Annette Menzel; M.V. Martins; Marízia Menezes Dias Pereira; Ruud P. Bartholomeus; Marie Dury;AbstractWe review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.
Global Change Biolog... arrow_drop_down Repositório Científico da Universidade de ÉvoraArticle . 2012Data sources: Repositório Científico da Universidade de ÉvoraUniversidade de Lisboa: Repositório.ULArticle . 2013Data sources: Universidade de Lisboa: Repositório.ULGlobal Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Repositório Científico da Universidade de ÉvoraArticle . 2012Data sources: Repositório Científico da Universidade de ÉvoraUniversidade de Lisboa: Repositório.ULArticle . 2013Data sources: Universidade de Lisboa: Repositório.ULGlobal Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2003 Italy, Belgium, NetherlandsPublisher:Oxford University Press (OUP) Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, P., de; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.;This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment (FACE) technique. Three species of Populus were examined, namely P. alba L., P. nigra L. and P. x euramericana Dode (Guinier). Aboveground woody biomass of trees exposed to elevated [CO2] for three growing seasons increased by 15 to 27%, depending on species. As a result, light-use efficiency increased. Aboveground biomass allocation was unaffected, and belowground biomass also increased under elevated [CO2] conditions, by 22 to 38%. Populus nigra, with total biomass equal to 62.02 and 72.03 Mg ha-1 in ambient and elevated [CO2], respectively, was the most productive species, although its productivity was stimulated least by atmospheric CO2 enrichment. There was greater depletion of inorganic nitrogen from the soil after three growing seasons in elevated [CO2], but no effect of [CO2] on stem wood density, which differed significantly only among species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:Wiley Funded by:EC | INCREASEEC| INCREASEAuthors: Dario Liberati; Gabriele Guidolotti; Giovanbattista de Dato; Paolo De Angelis;AbstractNet ecosystem CO2 exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem‐climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10‐year night‐time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night‐time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant‐level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO2 fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 Russian Federation, Germany, Russian Federation, ItalyPublisher:Elsevier BV Olga Gavrichkova; P. De Angelis; Dario Liberati; Enrico Brugnoli; Gabriele Guidolotti; Gabriele Guidolotti; A. Gunina; G. de Dato; Yakov Kuzyakov; Yakov Kuzyakov; Carlo Calfapietra;handle: 20.500.14243/334307
In the Mediterranean basin the effects of climate warming on ecosystem functioning will strongly depend on the warming intensity directly but also on its effects on evapotranspiration and nutrient cycling. Climate manipulation experiments under field conditions are a source of unique empirical evidence regarding climate-related modifications of biotic processes. A field night-time warming experiment, simulating the predicted near-future increase in ambient temperatures (+0.3 up to 1o C), was established in a Mediterranean shrub community located in Porto Conte (Italy) in 2001. After 11 years of continuous treatment, we labeled the dominant shrub Cistus monspeliensis with 13CO2 and studied the dynamics of the label allocation between aboveground and belowground pools and fluxes in warmed and ambient plots within 2 weeks of the chasing period. The interactions between C and N metabolism were assessed by parallel labeling of soil with K15NO3. Most of the assimilated 13C was respired by Cistus shoots (28-51%) within two weeks. Cistus under warming respired more 13C label and tended to allocate less 13C to leaves, branches and roots. The higher C and N content in microbial biomass in warming plots, combined with the higher N content in plant tissues and soil, evidenced a greater N mobilization in soil and a better nutrient status of the plants as compared to the ambient treatment. Acceleration of N cycling is probably responsible for higher respiratory C losses, but combined with the reduction in the number of frost days, should also positively affect plant photosynthetic performance. We conclude that, although Cistus plants are already growing in conditions close to their thermal optimum, long-term warming will positively affect the performance of this species, mainly by reducing the nutrient constraints. This positive effect will highly depend on the frequency and amount of rain events and their interactions with soil N content.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2005 Germany, BelgiumPublisher:Oxford University Press (OUP) Liberloo, M.; Dillen, S. Y.; Calfapietra, C.; Marinari, S.; Luo, Z. B.; De Angelis, P.; Ceulemans, R.;We investigated the individual and combined effects of elevated CO2 concentration and fertilization on aboveground growth of three poplar species (Populus alba L. Clone 2AS-11, P. nigra L. Clone Jean Pourtet and P. x euramericana Clone I-214) growing in a short-rotation coppice culture for two growing seasons after coppicing. Free-air carbon dioxide enrichment (FACE) stimulated the number of shoots per stool, leaf area index measured with a fish-eye-type plant canopy analyzer (LAIoptical), and annual leaf production, but did not affect dominant shoot height or canopy productivity index. Comparison of LAIoptical with LAI estimates from litter collections and from allometric relationships showed considerable differences. The increase in biomass in response to FACE was caused by an initial stimulation of absolute and relative growth rates, which disappeared after the first growing season following coppicing. An ontogenetic decline in growth in the FACE treatment, together with strong competition inside the dense plantation, may have caused this decrease. Fertilization did not influence aboveground growth, although some FACE responses were more pronounced in fertilized trees. A species effect was observed for most parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Australia, Denmark, Netherlands, Australia, BelgiumPublisher:Wiley Funded by:EC | ACQWAEC| ACQWAYiqi Luo; Ram Oren; Ram Oren; Sune Linder; Jeffrey S. Dukes; Jack A. Morgan; Klaus Steenberg Larsen; David T. Tingey; Marcel R. Hoosbeek; Paolo De Angelis; Frank Hagedorn; Sebastian Leuzinger; Sebastian Leuzinger; Feike A. Dijkstra; John S. King; John S. King; Sara Vicca; Wouter Dieleman; Wouter Dieleman; Mark J. Hovenden; Ivan A. Janssens; Astrid Volder; Claus Beier;AbstractIn recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]‐only treatment than to those in the warming‐only treatment. In contrast to warming‐only experiments, both the combined and the [ CO2 ]‐only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]‐only treatment, possibly due to the warming‐induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less‐than‐additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long‐term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.
Wageningen Staff Pub... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Wageningen Staff Pub... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Italy, Russian Federation, Russian Federation, Russian FederationPublisher:Elsevier BV Paolo De Angelis; Dario Liberati; Jing Tian; Jing Tian; Marie Spohn; Gabriele Guidolotti; Johanna Pausch; Olga Gavrichkova; Olga Gavrichkova; Enrico Brugnoli; Giovanbattista de Dato; Renée Abou Jaoudé; Yakov Kuzyakov;pmid: 30857089
handle: 20.500.14243/346979 , 2607/32776 , 2607/6758 , 2067/32776
Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2022 Italy, Denmark, United KingdomPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Italy, Italy, Germany, Netherlands, BelgiumPublisher:Oxford University Press (OUP) Gielen, B.; Calfapietra, C.; Lukac, M.; Wittig, V.E.; de Angelis, P.; Janssens, I.A.; Moscatelli, M.C.; Grego, S.; Cotrufo, M.F.; Godbold, D.; Hoosbeek, M.R.; Long, S.; Miglietta, F.; Polle, A.; Bernacchi, C.; Davey, P.A.; Ceulemans, R.; Scarascia-Mugnozza, G.;pmid: 16105807
handle: 20.500.14243/145403 , 10067/535870151162165141
A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO(2)]; 550 micromol mol(-1)) from planting through canopy closure using a free-air CO(2) enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in the second and third years, respectively. Partitioning of extra carbon (C) among C pools of different turnover rates is of critical interest; thus, we calculated net ecosystem productivity (NEP) to determine whether elevated atmospheric [CO(2)] will enhance net plantation C storage capacity. Free-air CO(2) enrichment increased net primary productivity (NPP) of all genotypes by 21% in the second year and by 26% in the third year, mainly because of an increase in the size of C pools with relatively slow turnover rates (i.e., wood). In all genotypes in the FACE treatment, more new soil C was added to the total soil C pool compared with the control treatment. However, more old soil C loss was observed in the FACE treatment compared with the control treatment, possibly due to a priming effect from newly incorporated root litter. FACE did not significantly increase NEP, probably as a result of this priming effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, France, Australia, Italy, France, Belgium, Spain, Spain, Australia, United Kingdom, Australia, Australia, SpainPublisher:Springer Science and Business Media LLC David T. Tissue; Markus Löw; Jeffrey M. Warren; Göran Wallin; Jonathan Bennie; Derek Eamus; Yusuke Onoda; Johan Uddling; David S. Ellsworth; Joana Zaragoza-Castells; Nicolas Martin-StPaul; Teis Nørgaard Mikkelsen; Craig V. M. Barton; Lucy Rowland; Maarten Op de Beeck; Jean-Marc Limousin; Patrick Meir; Han Wang; Maj-Lena Linderson; Oula Ghannoum; Jesse B. Nippert; Jeff W. G. Kelly; Alexandre Bosc; Alexandre Bosc; Kohei Koyama; Kohei Koyama; Teresa E. Gimeno; Troy W. Ocheltree; Sofia Baig; Qingmin Han; Lucas A. Cernusak; John E. Drake; Antonio Carlos Lola da Costa; Patrick J. Mitchell; Cate Macinins-Ng; Norma Salinas; Norma Salinas; Samantha A. Setterfield; Kouki Hikosaka; Lasse Tarvainen; M. S. J. Broadmeadow; Lisa Wingate; Remko A. Duursma; Lindsay B. Hutley; Víctor Resco de Dios; Alistair Rogers; Paolo De Angelis; Kihachiro Kikuzawa; Belinda E. Medlyn; Michael Freeman; Pasi Kolari; I. Colin Prentice; I. Colin Prentice; Damien Bonal; Sabine Tausz-Posch; Wei Sun; Yan-Shih Lin; Ana Rey;doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2, 3. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate. This research was supported by the Australian Research Council (ARC MIA Discovery Project 1433500-2012-14). A.R. was financially supported in part by The Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. M.O.d.B. acknowledges that the Brassica data were obtained within a research project financed by the Belgian Science Policy (OFFQ, contract number SD/AF/02) and coordinated by K. Vandermeiren at the Open-Top Chamber research facilities of CODA-CERVA (Tervuren, Belgium).
Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Portugal, Italy, Germany, Portugal, Portugal, ItalyPublisher:Wiley Funded by:EC | ACQWA, EC | MOTIVE, EC | CARBO-EXTREMEEC| ACQWA ,EC| MOTIVE ,EC| CARBO-EXTREMELouis François; Philipp Gloning; Annett Wolf; Francesca De Lorenzi; M. Riccardi; Thomas Kuster; Georg Niedrist; Paolo De Angelis; Renée Abou Jaoudé; Georg Wohlfahrt; Giovanbattista de Dato; Anja Rammig; Tamir Klein; Christopher P. O. Reyer; Sebastian Leuzinger; Sebastian Leuzinger; Sebastian Leuzinger; Antonello Bonfante; Annette Menzel; M.V. Martins; Marízia Menezes Dias Pereira; Ruud P. Bartholomeus; Marie Dury;AbstractWe review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.
Global Change Biolog... arrow_drop_down Repositório Científico da Universidade de ÉvoraArticle . 2012Data sources: Repositório Científico da Universidade de ÉvoraUniversidade de Lisboa: Repositório.ULArticle . 2013Data sources: Universidade de Lisboa: Repositório.ULGlobal Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Repositório Científico da Universidade de ÉvoraArticle . 2012Data sources: Repositório Científico da Universidade de ÉvoraUniversidade de Lisboa: Repositório.ULArticle . 2013Data sources: Universidade de Lisboa: Repositório.ULGlobal Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2003 Italy, Belgium, NetherlandsPublisher:Oxford University Press (OUP) Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, P., de; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.;This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment (FACE) technique. Three species of Populus were examined, namely P. alba L., P. nigra L. and P. x euramericana Dode (Guinier). Aboveground woody biomass of trees exposed to elevated [CO2] for three growing seasons increased by 15 to 27%, depending on species. As a result, light-use efficiency increased. Aboveground biomass allocation was unaffected, and belowground biomass also increased under elevated [CO2] conditions, by 22 to 38%. Populus nigra, with total biomass equal to 62.02 and 72.03 Mg ha-1 in ambient and elevated [CO2], respectively, was the most productive species, although its productivity was stimulated least by atmospheric CO2 enrichment. There was greater depletion of inorganic nitrogen from the soil after three growing seasons in elevated [CO2], but no effect of [CO2] on stem wood density, which differed significantly only among species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:Wiley Funded by:EC | INCREASEEC| INCREASEAuthors: Dario Liberati; Gabriele Guidolotti; Giovanbattista de Dato; Paolo De Angelis;AbstractNet ecosystem CO2 exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem‐climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10‐year night‐time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night‐time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant‐level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO2 fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2021License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/440749/1/Enhancement%20of%20ecosystem%20carbon.pdfData sources: IRIS CnrUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2021Full-Text: http://hdl.handle.net/2067/47140Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 Russian Federation, Germany, Russian Federation, ItalyPublisher:Elsevier BV Olga Gavrichkova; P. De Angelis; Dario Liberati; Enrico Brugnoli; Gabriele Guidolotti; Gabriele Guidolotti; A. Gunina; G. de Dato; Yakov Kuzyakov; Yakov Kuzyakov; Carlo Calfapietra;handle: 20.500.14243/334307
In the Mediterranean basin the effects of climate warming on ecosystem functioning will strongly depend on the warming intensity directly but also on its effects on evapotranspiration and nutrient cycling. Climate manipulation experiments under field conditions are a source of unique empirical evidence regarding climate-related modifications of biotic processes. A field night-time warming experiment, simulating the predicted near-future increase in ambient temperatures (+0.3 up to 1o C), was established in a Mediterranean shrub community located in Porto Conte (Italy) in 2001. After 11 years of continuous treatment, we labeled the dominant shrub Cistus monspeliensis with 13CO2 and studied the dynamics of the label allocation between aboveground and belowground pools and fluxes in warmed and ambient plots within 2 weeks of the chasing period. The interactions between C and N metabolism were assessed by parallel labeling of soil with K15NO3. Most of the assimilated 13C was respired by Cistus shoots (28-51%) within two weeks. Cistus under warming respired more 13C label and tended to allocate less 13C to leaves, branches and roots. The higher C and N content in microbial biomass in warming plots, combined with the higher N content in plant tissues and soil, evidenced a greater N mobilization in soil and a better nutrient status of the plants as compared to the ambient treatment. Acceleration of N cycling is probably responsible for higher respiratory C losses, but combined with the reduction in the number of frost days, should also positively affect plant photosynthetic performance. We conclude that, although Cistus plants are already growing in conditions close to their thermal optimum, long-term warming will positively affect the performance of this species, mainly by reducing the nutrient constraints. This positive effect will highly depend on the frequency and amount of rain events and their interactions with soil N content.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Environmental and Experimental BotanyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2005 Germany, BelgiumPublisher:Oxford University Press (OUP) Liberloo, M.; Dillen, S. Y.; Calfapietra, C.; Marinari, S.; Luo, Z. B.; De Angelis, P.; Ceulemans, R.;We investigated the individual and combined effects of elevated CO2 concentration and fertilization on aboveground growth of three poplar species (Populus alba L. Clone 2AS-11, P. nigra L. Clone Jean Pourtet and P. x euramericana Clone I-214) growing in a short-rotation coppice culture for two growing seasons after coppicing. Free-air carbon dioxide enrichment (FACE) stimulated the number of shoots per stool, leaf area index measured with a fish-eye-type plant canopy analyzer (LAIoptical), and annual leaf production, but did not affect dominant shoot height or canopy productivity index. Comparison of LAIoptical with LAI estimates from litter collections and from allometric relationships showed considerable differences. The increase in biomass in response to FACE was caused by an initial stimulation of absolute and relative growth rates, which disappeared after the first growing season following coppicing. An ontogenetic decline in growth in the FACE treatment, together with strong competition inside the dense plantation, may have caused this decrease. Fertilization did not influence aboveground growth, although some FACE responses were more pronounced in fertilized trees. A species effect was observed for most parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Australia, Denmark, Netherlands, Australia, BelgiumPublisher:Wiley Funded by:EC | ACQWAEC| ACQWAYiqi Luo; Ram Oren; Ram Oren; Sune Linder; Jeffrey S. Dukes; Jack A. Morgan; Klaus Steenberg Larsen; David T. Tingey; Marcel R. Hoosbeek; Paolo De Angelis; Frank Hagedorn; Sebastian Leuzinger; Sebastian Leuzinger; Feike A. Dijkstra; John S. King; John S. King; Sara Vicca; Wouter Dieleman; Wouter Dieleman; Mark J. Hovenden; Ivan A. Janssens; Astrid Volder; Claus Beier;AbstractIn recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]‐only treatment than to those in the warming‐only treatment. In contrast to warming‐only experiments, both the combined and the [ CO2 ]‐only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]‐only treatment, possibly due to the warming‐induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less‐than‐additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long‐term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.
Wageningen Staff Pub... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Wageningen Staff Pub... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Italy, Russian Federation, Russian Federation, Russian FederationPublisher:Elsevier BV Paolo De Angelis; Dario Liberati; Jing Tian; Jing Tian; Marie Spohn; Gabriele Guidolotti; Johanna Pausch; Olga Gavrichkova; Olga Gavrichkova; Enrico Brugnoli; Giovanbattista de Dato; Renée Abou Jaoudé; Yakov Kuzyakov;pmid: 30857089
handle: 20.500.14243/346979 , 2607/32776 , 2607/6758 , 2067/32776
Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.
Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Национальный агрегат... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
