- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, Belgium, United KingdomPublisher:Copernicus GmbH A. Bastos; P. Ciais; F. Chevallier; C. Rödenbeck; A. P. Ballantyne; A. P. Ballantyne; F. Maignan; Y. Yin; M. Fernández-Martínez; P. Friedlingstein; J. Peñuelas; J. Peñuelas; S. L. Piao; S. Sitch; W. K. Smith; X. Wang; Z. Zhu; V. Haverd; E. Kato; A. K. Jain; S. Lienert; D. Lombardozzi; J. E. M. S. Nabel; P. Peylin; B. Poulter; D. Zhu;Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 exchange in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980−2015. The LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA trends, which suggests SCA could help to constrain model turnover times.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, United Kingdom, Switzerland, United Kingdom, Netherlands, Netherlands, United Kingdom, Netherlands, United Kingdom, Norway, United KingdomPublisher:Copernicus GmbH Funded by:EC | CARBOCHANGE, SNSF | Klima- und Umweltphysik, RCN | Support for the Scientifi... +3 projectsEC| CARBOCHANGE ,SNSF| Klima- und Umweltphysik ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| GEOCARBON ,EC| COMBINE ,SNSF| Climate and Environmental PhysicsClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1 PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Austria, Netherlands, Germany, Germany, Netherlands, FrancePublisher:Springer Science and Business Media LLC Steven K. Rose; Alexander Popp; Shinichiro Fujimori; Petr Havlik; John Weyant; Marshall Wise; Detlef van Vuuren; Thierry Brunelle; Ryna Yiyun Cui; Vassilis Daioglou; Stefan Frank; Tomoko Hasegawa; Florian Humpenöder; Etsushi Kato; Ronald D. Sands; Fuminori Sano; Junichi Tsutsui; Jonathan Doelman; Matteo Muratori; Rémi Prudhomme; Kenichi Wada; Hiromi Yamamoto;Abstract Bioenergy is projected to have a prominent, valuable, and maybe essential, role in climate management. However, there is significant variation in projected bioenergy deployment results, as well as concerns about the potential environmental and social implications of supplying biomass. Bioenergy deployment projections are market equilibrium solutions from integrated modeling, yet little is known about the underlying modeling of the supply of biomass as a feedstock for energy use in these modeling frameworks. We undertake a novel diagnostic analysis with ten global models to elucidate, compare, and assess how biomass is supplied within the models used to inform long-run climate management. With experiments that isolate and reveal biomass supply modeling behavior and characteristics (costs, emissions, land use, market effects), we learn about biomass supply tendencies and differences. The insights provide a new level of modeling transparency and understanding of estimated global biomass supplies that informs evaluation of the potential for bioenergy in managing the climate and interpretation of integrated modeling. For each model, we characterize the potential distributions of global biomass supply across regions and feedstock types for increasing levels of quantity supplied, as well as some of the potential societal externalities of supplying biomass. We also evaluate the biomass supply implications of managing these externalities. Finally, we interpret biomass market results from integrated modeling in terms of our new understanding of biomass supply. Overall, we find little consensus between models on where biomass could be cost-effectively produced and the implications. We also reveal model specific biomass supply narratives, with results providing new insights into integrated modeling bioenergy outcomes and differences. The analysis finds that many integrated models are considering and managing emissions and land use externalities of supplying biomass and estimating that environmental and societal trade-offs in the form of land emissions, land conversion, and higher agricultural prices are cost-effective, and to some degree a reality of using biomass, to address climate change.
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-022-03336-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-022-03336-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Atsushi Kurosawa; Etsushi Kato;Abstract Japanese energy system toward the mid-century has been assessed using an energy system model with inter-temporal optimization of total system cost, TIMES-Japan. The assessment framework couples the energy system model and detail sectoral models such as power system model, wind and solar power capacity potential models, and building energy model via soft-linkage. 70%, 80% and 90% emissions reductions targets at 2050 are assessed with varying assumption of carbon capture and storage (CCS) and nuclear power. It shows sensitivity in the final energy consumption of zero emissions carriers in transportation sector, particularly in LDV. Availability of power generation using biomass with CCS (BECCS) is also considered in the model to evaluate transitions of energy systems toward net-zero emissions after 2050.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yiyi Ju; Masahiro Sugiyama; Etsushi Kato; Ken Oshiro; Jiayang Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Ronald D. Sands; Detlef P. van Vuuren; Detlef P. van Vuuren; Steven K. Rose; Jessica Strefler; Matthew Gidden; Matteo Muratori; Shinichiro Fujimori; Shinichiro Fujimori; John P. Weyant; Nicolas Bauer; Vassilis Daioglou; Vassilis Daioglou; Yiyun Cui; Etsushi Kato; Marshall Wise;This paper explores the potential role of bioenergy coupled to carbon dioxide (CO2) capture and storage (BECCS) in long-term global scenarios. We first validate past insights regarding the potential use of BECCS in achieving climate goals based on results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33). As found in previous studies, our results consistently project large-scale cost-effective BECCS deployment. However, we also find a strong synergistic nexus between CCS and biomass, with bioenergy the preferred fuel for CCS as the climate constraint increases. Specifically, the share of bioenergy that is coupled to CCS technologies increases since CCS effectively enhances the emissions mitigation capacity of bioenergy. For the models that include BECCS technologies across multiple sectors, there is significant deployment in conjunction with liquid fuel or hydrogen production to decarbonize the transportation sector. Using a wide set of scenarios, we find carbon removal to be crucial to achieving goals consistent with 1.5 °C warming. However, we find earlier BECCS deployment but not necessarily greater use in the long-term since ultimately deployment is limited by economic competition with other carbon-free technologies, especially in the electricity sector, by land-use competition (especially with food) affecting biomass feedstock availability and price, and by carbon storage limitations. The extent of BECCS deployment varies based on model assumptions, with BECCS deployment competitive in some models below carbon prices of 100 US$/tCO2. Without carbon removal, 2 °C is infeasible in some models, while those that solve find similar levels of bioenergy use but substantially greater mitigation costs. Overall, the paper provides needed transparency regarding BECCS’ role, and results highlight a strong nexus between bioenergy and CCS, and a large reliance on not-yet-commercial BECCS technologies for achieving climate goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02784-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02784-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Netherlands, Germany, Netherlands, FrancePublisher:Springer Science and Business Media LLC Junichi Tsutsui; Alban Kitous; Steven K. Rose; David Klein; Fuminori Sano; Matthew Gidden; Detlef P. van Vuuren; Detlef P. van Vuuren; Florian Leblanc; Matteo Muratori; Vassilis Daioglou; Vassilis Daioglou; Nico Bauer; Kimon Keramidas; Etsushi Kato; Marshal Wise; Shinichiro Fujimori; Shinichiro Fujimori;AbstractBioenergy is expected to play an important role in long-run climate change mitigation strategies as highlighted by many integrated assessment model (IAM) scenarios. These scenarios, however, also show a very wide range of results, with uncertainty about bioenergy conversion technology deployment and biomass feedstock supply. To date, the underlying differences in model assumptions and parameters for the range of results have not been conveyed. Here we explore the models and results of the 33rd study of the Stanford Energy Modeling Forum to elucidate and explore bioenergy technology specifications and constraints that underlie projected bioenergy outcomes. We first develop and report consistent bioenergy technology characterizations and modeling details. We evaluate the bioenergy technology specifications through a series of analyses—comparison with the literature, model intercomparison, and an assessment of bioenergy technology projected deployments. We find that bioenergy technology coverage and characterization varies substantially across models, spanning different conversion routes, carbon capture and storage opportunities, and technology deployment constraints. Still, the range of technology specification assumptions is largely in line with bottom-up engineering estimates. We then find that variation in bioenergy deployment across models cannot be understood from technology costs alone. Important additional determinants include biomass feedstock costs, the availability and costs of alternative mitigation options in and across end-uses, the availability of carbon dioxide removal possibilities, the speed with which large scale changes in the makeup of energy conversion facilities and integration can take place, and the relative demand for different energy services.
Publication Database... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02799-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Publication Database... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02799-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, Germany, France, France, Netherlands, FrancePublisher:Springer Science and Business Media LLC Funded by:DFG | Climate Engineering: Risk..., DFGDFG| Climate Engineering: Risks, Challenges, Opportunities? ,DFGJunichi Tsutsui; Jessica Strefler; Shinichiro Fujimori; Shinichiro Fujimori; Matteo Muratori; John P. Weyant; Detlef P. van Vuuren; Detlef P. van Vuuren; Alban Kitous; Atsushi Kurosawa; Matthew Gidden; Steven K. Rose; Oliver Fricko; David Klein; Silvana Mima; Ruben Bibas; Vassilis Daioglou; Florian Leblanc; Ronald D. Sands; Nico Bauer; Tomoko Hasegawa; Etsushi Kato; Marshall Wise; Yiyun Cui; Fuminori Sano;We present an overview of results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33) on the viability of large-scale deployment of bioenergy for achieving long-run climate goals. The study explores future bioenergy use across models under harmonized scenarios for future climate policies, availability of bioenergy technologies, and constraints on biomass supply. This paper provides a more transparent description of IAMs that span a broad range of assumptions regarding model structures, energy sectors, and bioenergy conversion chains. Without emission constraints, we find vastly different CO2 emission and bioenergy deployment patterns across models due to differences in competition with fossil fuels, the possibility to produce large-scale bio-liquids, and the flexibility of energy systems. Imposing increasingly stringent carbon budgets mostly increases bioenergy use. A diverse set of available bioenergy technology portfolios provides flexibility to allocate bioenergy to supply different final energy as well as remove carbon dioxide from the atmosphere by combining bioenergy with carbon capture and sequestration (BECCS). Sector and regional bioenergy allocation varies dramatically across models mainly due to bioenergy technology availability and costs, final energy patterns, and availability of alternative decarbonization options. Although much bioenergy is used in combination with CCS, BECCS is not necessarily the driver of bioenergy use. We find that the flexibility to use biomass feedstocks in different energy sub-sectors makes large-scale bioenergy deployment a robust strategy in mitigation scenarios that is surprisingly insensitive with respect to reduced technology availability. However, the achievability of stringent carbon budgets and associated carbon prices is sensitive. Constraints on biomass feedstock supply increase the carbon price less significantly than excluding BECCS because carbon removals are still realized and valued. Incremental sensitivity tests find that delayed readiness of bioenergy technologies until 2050 is more important than potentially higher investment costs.
Climatic Change arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Climatic Change arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Etsushi Kato; Atsushi Kurosawa; Hadi Farabi-Asl; Kenshi Itaoka; Andrew Chapman;Abstract In order to achieve the Paris Agreement target of well below 2-degrees centigrade goal, developed countries have committed to reducing their emissions considerably during the coming decades. In order to achieve the ambitious target of an 80 % CO2 emission reduction in Japan by 2050 (compared to 2013 levels), various energy efficient and low-carbon technologies on the supply and demand sides of the energy system must be deployed at reasonable cost. In this study, we investigate the possibility of achieving the emission reduction targets in Japan using the TIMES-Japan framework, which employs a least cost optimization approach. The contribution of carbon capture and storage (CCS) in achieving the emission reduction targets is studied in various scenarios as alongside the evaluation of two important emission reducing technologies in the same energy sector as CCS. Results of the analysis reveals the importance of hydrogen import on the supply side and the electrification of steel-making furnaces (EAF) on the demand side in order to obtain “feasible” scenarios. The minimum amount of CCS capacity is calculated for each scenario and the results vary between 5 and 150 million tons of CO2 by 2050. The range of minimum CCS capacity is wide and affected by the availability of hydrogen imports and EAF for steelmaking in various scenarios; while extremely low CCS capacity results in a very high energy system cost. Based on the results of our analysis, policy implications for appropriate levels of CCS, hydrogen import and EAF deployment are discussed.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustriaPublisher:Springer Science and Business Media LLC Ken Oshiro; Ryoichi Komiyama; Hiroto Shiraki; Yiyi Ju; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Masahiro Sugiyama; Yuhji Matsuo; Diego Silva Herran; Kenichi Wada; Etsushi Kato;AbstractIn June, 2019, Japan submitted its mid-century strategy to the United Nations Framework Convention on Climate Change and pledged 80% emissions cuts by 2050. The strategy has not gone through a systematic analysis, however. The present study, Stanford Energy Modeling Forum (EMF) 35 Japan Model Intercomparison project (JMIP), employs five energy-economic and integrated assessment models to evaluate the nationally determined contribution and mid-century strategy of Japan. EMF 35 JMIP conducts a suite of sensitivity analyses on dimensions including emissions constraints, technology availability, and demand projections. The results confirm that Japan needs to deploy all of its mitigation strategies at a substantial scale, including energy efficiency, electricity decarbonization, and end-use electrification. Moreover, they suggest that with the absence of structural changes in the economy, heavy industries will be one of the hardest to decarbonize. Partitioning of the sum of squares based on a two-way analysis of variance (ANOVA) reconfirms that mitigation strategies, such as energy efficiency and electrification, are fairly robust across models and scenarios, but that the cost metrics are uncertain. There is a wide gap of policy strength and breadth between the current policy instruments and those suggested by the models. Japan should strengthen its climate action in all aspects of society and economy to achieve its long-term target.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-021-00913-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-021-00913-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, Belgium, United KingdomPublisher:Copernicus GmbH A. Bastos; P. Ciais; F. Chevallier; C. Rödenbeck; A. P. Ballantyne; A. P. Ballantyne; F. Maignan; Y. Yin; M. Fernández-Martínez; P. Friedlingstein; J. Peñuelas; J. Peñuelas; S. L. Piao; S. Sitch; W. K. Smith; X. Wang; Z. Zhu; V. Haverd; E. Kato; A. K. Jain; S. Lienert; D. Lombardozzi; J. E. M. S. Nabel; P. Peylin; B. Poulter; D. Zhu;Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 exchange in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980−2015. The LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA trends, which suggests SCA could help to constrain model turnover times.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, United Kingdom, Switzerland, United Kingdom, Netherlands, Netherlands, United Kingdom, Netherlands, United Kingdom, Norway, United KingdomPublisher:Copernicus GmbH Funded by:EC | CARBOCHANGE, SNSF | Klima- und Umweltphysik, RCN | Support for the Scientifi... +3 projectsEC| CARBOCHANGE ,SNSF| Klima- und Umweltphysik ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| GEOCARBON ,EC| COMBINE ,SNSF| Climate and Environmental PhysicsClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1 PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Austria, Netherlands, Germany, Germany, Netherlands, FrancePublisher:Springer Science and Business Media LLC Steven K. Rose; Alexander Popp; Shinichiro Fujimori; Petr Havlik; John Weyant; Marshall Wise; Detlef van Vuuren; Thierry Brunelle; Ryna Yiyun Cui; Vassilis Daioglou; Stefan Frank; Tomoko Hasegawa; Florian Humpenöder; Etsushi Kato; Ronald D. Sands; Fuminori Sano; Junichi Tsutsui; Jonathan Doelman; Matteo Muratori; Rémi Prudhomme; Kenichi Wada; Hiromi Yamamoto;Abstract Bioenergy is projected to have a prominent, valuable, and maybe essential, role in climate management. However, there is significant variation in projected bioenergy deployment results, as well as concerns about the potential environmental and social implications of supplying biomass. Bioenergy deployment projections are market equilibrium solutions from integrated modeling, yet little is known about the underlying modeling of the supply of biomass as a feedstock for energy use in these modeling frameworks. We undertake a novel diagnostic analysis with ten global models to elucidate, compare, and assess how biomass is supplied within the models used to inform long-run climate management. With experiments that isolate and reveal biomass supply modeling behavior and characteristics (costs, emissions, land use, market effects), we learn about biomass supply tendencies and differences. The insights provide a new level of modeling transparency and understanding of estimated global biomass supplies that informs evaluation of the potential for bioenergy in managing the climate and interpretation of integrated modeling. For each model, we characterize the potential distributions of global biomass supply across regions and feedstock types for increasing levels of quantity supplied, as well as some of the potential societal externalities of supplying biomass. We also evaluate the biomass supply implications of managing these externalities. Finally, we interpret biomass market results from integrated modeling in terms of our new understanding of biomass supply. Overall, we find little consensus between models on where biomass could be cost-effectively produced and the implications. We also reveal model specific biomass supply narratives, with results providing new insights into integrated modeling bioenergy outcomes and differences. The analysis finds that many integrated models are considering and managing emissions and land use externalities of supplying biomass and estimating that environmental and societal trade-offs in the form of land emissions, land conversion, and higher agricultural prices are cost-effective, and to some degree a reality of using biomass, to address climate change.
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-022-03336-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-022-03336-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Atsushi Kurosawa; Etsushi Kato;Abstract Japanese energy system toward the mid-century has been assessed using an energy system model with inter-temporal optimization of total system cost, TIMES-Japan. The assessment framework couples the energy system model and detail sectoral models such as power system model, wind and solar power capacity potential models, and building energy model via soft-linkage. 70%, 80% and 90% emissions reductions targets at 2050 are assessed with varying assumption of carbon capture and storage (CCS) and nuclear power. It shows sensitivity in the final energy consumption of zero emissions carriers in transportation sector, particularly in LDV. Availability of power generation using biomass with CCS (BECCS) is also considered in the model to evaluate transitions of energy systems toward net-zero emissions after 2050.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yiyi Ju; Masahiro Sugiyama; Etsushi Kato; Ken Oshiro; Jiayang Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Ronald D. Sands; Detlef P. van Vuuren; Detlef P. van Vuuren; Steven K. Rose; Jessica Strefler; Matthew Gidden; Matteo Muratori; Shinichiro Fujimori; Shinichiro Fujimori; John P. Weyant; Nicolas Bauer; Vassilis Daioglou; Vassilis Daioglou; Yiyun Cui; Etsushi Kato; Marshall Wise;This paper explores the potential role of bioenergy coupled to carbon dioxide (CO2) capture and storage (BECCS) in long-term global scenarios. We first validate past insights regarding the potential use of BECCS in achieving climate goals based on results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33). As found in previous studies, our results consistently project large-scale cost-effective BECCS deployment. However, we also find a strong synergistic nexus between CCS and biomass, with bioenergy the preferred fuel for CCS as the climate constraint increases. Specifically, the share of bioenergy that is coupled to CCS technologies increases since CCS effectively enhances the emissions mitigation capacity of bioenergy. For the models that include BECCS technologies across multiple sectors, there is significant deployment in conjunction with liquid fuel or hydrogen production to decarbonize the transportation sector. Using a wide set of scenarios, we find carbon removal to be crucial to achieving goals consistent with 1.5 °C warming. However, we find earlier BECCS deployment but not necessarily greater use in the long-term since ultimately deployment is limited by economic competition with other carbon-free technologies, especially in the electricity sector, by land-use competition (especially with food) affecting biomass feedstock availability and price, and by carbon storage limitations. The extent of BECCS deployment varies based on model assumptions, with BECCS deployment competitive in some models below carbon prices of 100 US$/tCO2. Without carbon removal, 2 °C is infeasible in some models, while those that solve find similar levels of bioenergy use but substantially greater mitigation costs. Overall, the paper provides needed transparency regarding BECCS’ role, and results highlight a strong nexus between bioenergy and CCS, and a large reliance on not-yet-commercial BECCS technologies for achieving climate goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02784-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02784-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Netherlands, Germany, Netherlands, FrancePublisher:Springer Science and Business Media LLC Junichi Tsutsui; Alban Kitous; Steven K. Rose; David Klein; Fuminori Sano; Matthew Gidden; Detlef P. van Vuuren; Detlef P. van Vuuren; Florian Leblanc; Matteo Muratori; Vassilis Daioglou; Vassilis Daioglou; Nico Bauer; Kimon Keramidas; Etsushi Kato; Marshal Wise; Shinichiro Fujimori; Shinichiro Fujimori;AbstractBioenergy is expected to play an important role in long-run climate change mitigation strategies as highlighted by many integrated assessment model (IAM) scenarios. These scenarios, however, also show a very wide range of results, with uncertainty about bioenergy conversion technology deployment and biomass feedstock supply. To date, the underlying differences in model assumptions and parameters for the range of results have not been conveyed. Here we explore the models and results of the 33rd study of the Stanford Energy Modeling Forum to elucidate and explore bioenergy technology specifications and constraints that underlie projected bioenergy outcomes. We first develop and report consistent bioenergy technology characterizations and modeling details. We evaluate the bioenergy technology specifications through a series of analyses—comparison with the literature, model intercomparison, and an assessment of bioenergy technology projected deployments. We find that bioenergy technology coverage and characterization varies substantially across models, spanning different conversion routes, carbon capture and storage opportunities, and technology deployment constraints. Still, the range of technology specification assumptions is largely in line with bottom-up engineering estimates. We then find that variation in bioenergy deployment across models cannot be understood from technology costs alone. Important additional determinants include biomass feedstock costs, the availability and costs of alternative mitigation options in and across end-uses, the availability of carbon dioxide removal possibilities, the speed with which large scale changes in the makeup of energy conversion facilities and integration can take place, and the relative demand for different energy services.
Publication Database... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02799-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Publication Database... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02799-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, Germany, France, France, Netherlands, FrancePublisher:Springer Science and Business Media LLC Funded by:DFG | Climate Engineering: Risk..., DFGDFG| Climate Engineering: Risks, Challenges, Opportunities? ,DFGJunichi Tsutsui; Jessica Strefler; Shinichiro Fujimori; Shinichiro Fujimori; Matteo Muratori; John P. Weyant; Detlef P. van Vuuren; Detlef P. van Vuuren; Alban Kitous; Atsushi Kurosawa; Matthew Gidden; Steven K. Rose; Oliver Fricko; David Klein; Silvana Mima; Ruben Bibas; Vassilis Daioglou; Florian Leblanc; Ronald D. Sands; Nico Bauer; Tomoko Hasegawa; Etsushi Kato; Marshall Wise; Yiyun Cui; Fuminori Sano;We present an overview of results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33) on the viability of large-scale deployment of bioenergy for achieving long-run climate goals. The study explores future bioenergy use across models under harmonized scenarios for future climate policies, availability of bioenergy technologies, and constraints on biomass supply. This paper provides a more transparent description of IAMs that span a broad range of assumptions regarding model structures, energy sectors, and bioenergy conversion chains. Without emission constraints, we find vastly different CO2 emission and bioenergy deployment patterns across models due to differences in competition with fossil fuels, the possibility to produce large-scale bio-liquids, and the flexibility of energy systems. Imposing increasingly stringent carbon budgets mostly increases bioenergy use. A diverse set of available bioenergy technology portfolios provides flexibility to allocate bioenergy to supply different final energy as well as remove carbon dioxide from the atmosphere by combining bioenergy with carbon capture and sequestration (BECCS). Sector and regional bioenergy allocation varies dramatically across models mainly due to bioenergy technology availability and costs, final energy patterns, and availability of alternative decarbonization options. Although much bioenergy is used in combination with CCS, BECCS is not necessarily the driver of bioenergy use. We find that the flexibility to use biomass feedstocks in different energy sub-sectors makes large-scale bioenergy deployment a robust strategy in mitigation scenarios that is surprisingly insensitive with respect to reduced technology availability. However, the achievability of stringent carbon budgets and associated carbon prices is sensitive. Constraints on biomass feedstock supply increase the carbon price less significantly than excluding BECCS because carbon removals are still realized and valued. Incremental sensitivity tests find that delayed readiness of bioenergy technologies until 2050 is more important than potentially higher investment costs.
Climatic Change arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Climatic Change arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Etsushi Kato; Atsushi Kurosawa; Hadi Farabi-Asl; Kenshi Itaoka; Andrew Chapman;Abstract In order to achieve the Paris Agreement target of well below 2-degrees centigrade goal, developed countries have committed to reducing their emissions considerably during the coming decades. In order to achieve the ambitious target of an 80 % CO2 emission reduction in Japan by 2050 (compared to 2013 levels), various energy efficient and low-carbon technologies on the supply and demand sides of the energy system must be deployed at reasonable cost. In this study, we investigate the possibility of achieving the emission reduction targets in Japan using the TIMES-Japan framework, which employs a least cost optimization approach. The contribution of carbon capture and storage (CCS) in achieving the emission reduction targets is studied in various scenarios as alongside the evaluation of two important emission reducing technologies in the same energy sector as CCS. Results of the analysis reveals the importance of hydrogen import on the supply side and the electrification of steel-making furnaces (EAF) on the demand side in order to obtain “feasible” scenarios. The minimum amount of CCS capacity is calculated for each scenario and the results vary between 5 and 150 million tons of CO2 by 2050. The range of minimum CCS capacity is wide and affected by the availability of hydrogen imports and EAF for steelmaking in various scenarios; while extremely low CCS capacity results in a very high energy system cost. Based on the results of our analysis, policy implications for appropriate levels of CCS, hydrogen import and EAF deployment are discussed.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustriaPublisher:Springer Science and Business Media LLC Ken Oshiro; Ryoichi Komiyama; Hiroto Shiraki; Yiyi Ju; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Masahiro Sugiyama; Yuhji Matsuo; Diego Silva Herran; Kenichi Wada; Etsushi Kato;AbstractIn June, 2019, Japan submitted its mid-century strategy to the United Nations Framework Convention on Climate Change and pledged 80% emissions cuts by 2050. The strategy has not gone through a systematic analysis, however. The present study, Stanford Energy Modeling Forum (EMF) 35 Japan Model Intercomparison project (JMIP), employs five energy-economic and integrated assessment models to evaluate the nationally determined contribution and mid-century strategy of Japan. EMF 35 JMIP conducts a suite of sensitivity analyses on dimensions including emissions constraints, technology availability, and demand projections. The results confirm that Japan needs to deploy all of its mitigation strategies at a substantial scale, including energy efficiency, electricity decarbonization, and end-use electrification. Moreover, they suggest that with the absence of structural changes in the economy, heavy industries will be one of the hardest to decarbonize. Partitioning of the sum of squares based on a two-way analysis of variance (ANOVA) reconfirms that mitigation strategies, such as energy efficiency and electrification, are fairly robust across models and scenarios, but that the cost metrics are uncertain. There is a wide gap of policy strength and breadth between the current policy instruments and those suggested by the models. Japan should strengthen its climate action in all aspects of society and economy to achieve its long-term target.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-021-00913-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/17048/1/Sugiyama2021_Article_EMF35JMIPStudyForJapanSLong-te.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-021-00913-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu