- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, United Kingdom, Switzerland, United Kingdom, Netherlands, Netherlands, United Kingdom, Netherlands, United Kingdom, Norway, United KingdomPublisher:Copernicus GmbH Funded by:EC | CARBOCHANGE, SNSF | Klima- und Umweltphysik, RCN | Support for the Scientifi... +3 projectsEC| CARBOCHANGE ,SNSF| Klima- und Umweltphysik ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| GEOCARBON ,EC| COMBINE ,SNSF| Climate and Environmental PhysicsClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Martina Schmidt; Stanley C. Tyler; Fabrice Papa; Didier Hauglustaine; M. Ramonet; Philippe Ciais; G. R. van der Werf; Philippe Peylin; C. Carouge; Edward J. Dlugokencky; J. Lathière; Ray L. Langenfelds; John B. Miller; John B. Miller; Catherine Prigent; E. G. Brunke; L. P. Steele; James W. C. White; Philippe Bousquet; Philippe Bousquet;Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Niño event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature05132&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature05132&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Germany, Netherlands, GermanyPublisher:Copernicus GmbH Funded by:NWO | Biomass-burning radiative..., NWO | Isotopes for resolving th...NWO| Biomass-burning radiative forcing ,NWO| Isotopes for resolving the Atmospheric CO Budget (IACOB)Tom Eames; Guido R. van der Werf; Patrik Winiger; Patrik Winiger; Anupam Shaikat; Carina van der Veen; Natasha Ribeiro; Roland Vernooij; Chenxi Qiu; Chenxi Qiu; Ulrike Dusek; Peng Yao; M. E. Popa;Abstract. Landscape fires are a significant contributor to atmospheric burdens of greenhouse gases and aerosols. Although many studies have looked at biomass burning products and their fate in the atmosphere, estimating and tracing atmospheric pollution from landscape fires based on atmospheric measurements are challenging due to the large variability in fuel composition and burning conditions. Stable carbon isotopes in biomass burning (BB) emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to various combustion products. However, there are still many uncertainties regarding changes in isotopic composition (also known as fractionation) of the emitted carbon compared to the burnt fuel during the pyrolysis and combustion processes. To study BB isotope fractionation, we performed a series of laboratory fire experiments in which we burned pure C3 and C4 plants as well as mixtures of the two. Using isotope ratio mass spectrometry (IRMS), we measured stable carbon isotope signatures in the pre-fire fuels and post-fire residual char, as well as in the CO2, CO, CH4, organic carbon (OC), and elemental carbon (EC) emissions, which together constitute over 98 % of the post-fire carbon. Our laboratory tests indicated substantial isotopic fractionation in combustion products compared to the fuel, which varied between the measured fire products. CO2, EC, and residual char were the most reliable tracers of the fuel 13C signature. CO in particular showed a distinct dependence on burning conditions; flaming emissions were enriched in 13C compared to smouldering combustion emissions. For CH4 and OC, the fractionation was the other way round for C3 emissions (13C-enriched) and C4 emissions (13C-depleted). This indicates that while it is possible to distinguish between fires that were dominated by either C3 or C4 fuels using these tracers, it is more complicated to quantify their relative contribution to a mixed-fuel fire based on the δ13C signature of emissions. Besides laboratory experiments, we sampled gases and carbonaceous aerosols from prescribed fires in the Niassa Special Reserve (NSR) in Mozambique, using an unmanned aerial system (UAS)-mounted sampling set-up. We also provided a range of C3:C4 contributions to the fuel and measured the fuel isotopic signatures. While both OC and EC were useful tracers of the C3-to-C4 fuel ratio in mixed fires in the lab, we found particularly OC to be depleted compared to the calculated fuel signal in the field experiments. This suggests that either our fuel measurements were incomprehensive and underestimated the C3:C4 ratio in the field or other processes caused this depletion. Although additional field measurements are needed, our results indicate that C3-vs.-C4 source ratio estimation is possible with most BB products, albeit with varying uncertainty ranges.
Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2022Atmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: University of Groningen Research PortalAtmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-22-2871-2022&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2022Atmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: University of Groningen Research PortalAtmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-22-2871-2022&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2023 NetherlandsPublisher:Copernicus GmbH Funded by:NWO | Biomass-burning radiative...NWO| Biomass-burning radiative forcingR. Vernooij; T. Eames; J. Russell-Smith; J. Russell-Smith; C. Yates; C. Yates; R. Beatty; R. Beatty; J. Evans; J. Evans; A. Edwards; A. Edwards; N. Ribeiro; M. Wooster; M. Wooster; T. Strydom; M. V. Giongo; M. A. Borges; M. Menezes Costa; A. C. S. Barradas; D. van Wees; G. R. Van der Werf;Abstract. Landscape fires, predominantly found in the frequently burning global savannas, are a substantial source of greenhouse gases and aerosols. The impact of these fires on atmospheric composition is partially determined by the chemical breakup of the constituents of the fuel into individual emitted chemical species, which is described by emission factors (EFs). These EFs are known to be dependent on, amongst other things, the type of fuel consumed, the moisture content of the fuel, and the meteorological conditions during the fire, indicating that savanna EFs are temporally and spatially dynamic. Global emission inventories, however, rely on static biome-averaged EFs, which makes them ill-suited for the estimation of regional biomass burning (BB) emissions and for capturing the effects of shifts in fire regimes. In this study we explore the main drivers of EF variability within the savanna biome and assess which geospatial proxies can be used to estimate dynamic EFs for global emission inventories. We made over 4500 bag measurements of CO2, CO, CH4, and N2O EFs using a UAS and also measured fuel parameters and fire-severity proxies during 129 individual fires. The measurements cover a variety of savanna ecosystems under different seasonal conditions sampled over the course of six fire seasons between 2017 and 2022. We complemented our own data with EFs from 85 fires with locations and dates provided in the literature. Based on the locations, dates, and times of the fires we retrieved a variety of fuel, weather, and fire-severity proxies (i.e. possible predictors) using globally available satellite and reanalysis data. We then trained random forest (RF) regressors to estimate EFs for CO2, CO, CH4, and N2O at a spatial resolution of 0.25∘ and a monthly time step. Using these modelled EFs, we calculated their spatiotemporal impact on BB emission estimates over the 2002–2016 period using the Global Fire Emissions Database version 4 with small fires (GFED4s). We found that the most important field indicators for the EFs of CO2, CO, and CH4 were tree cover density, fuel moisture content, and the grass-to-litter ratio. The grass-to-litter ratio and the nitrogen-to-carbon ratio were important indicators for N2O EFs. RF models using satellite observations performed well for the prediction of EF variability in the measured fires with out-of-sample correlation coefficients between 0.80 and 0.99, reducing the error between measured and modelled EFs by 60 %–85 % compared to using the static biome average. Using dynamic EFs, total global savanna emission estimates for 2002–2016 were 1.8 % higher for CO, while CO2, CH4, and N2O emissions were, respectively, 0.2 %, 5 %, and 18 % lower compared to GFED4s. On a regional scale we found a spatial redistribution compared to GFED4s with higher CO, CH4, and N2O EFs in mesic regions and lower ones in xeric regions. Over the course of the fire season, drying resulted in gradually lower EFs of these species. Relatively speaking, the trend was stronger in open savannas than in woodlands, where towards the end of the fire season they increased again. Contrary to the minor impact on annual average savanna fire emissions, the model predicts localized deviations from static averages of the EFs of CO, CH4, and N2O exceeding 60 % under seasonal conditions.
Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/esd-14-1039-2023&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/esd-14-1039-2023&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Biomass-burning radiative...NWO| Biomass-burning radiative forcingSander Houweling; Sander Houweling; J. Pepijn Veefkind; J. Pepijn Veefkind; Ivar R. van der Velde; Ivar R. van der Velde; Richard van Hees; Ilse Aben; Ilse Aben; Paul J. J. Tol; Tim A. van Kempen; Tobias Borsdorff; Guido R. van der Werf; Joannes D. Maasakkers; Ruud W. M. Hoogeveen; Jochen Landgraf;Southeast Australia experienced intensive and geographically extensive wildfires during the 2019-2020 summer season1,2. The fires released substantial amounts of carbon dioxide into the atmosphere3. However, existing emission estimates based on fire inventories are uncertain4, and vary by up to a factor of four for this event. Here we constrain emission estimates with the help of satellite observations of carbon monoxide5, an analytical Bayesian inversion6 and observed ratios between emitted carbon dioxide and carbon monoxide7. We estimate emissions of carbon dioxide to be 715 teragrams (range 517-867) from November 2019 to January 2020. This is more than twice the estimate derived by five different fire inventories8-12, and broadly consistent with estimates based on a bottom-up bootstrap analysis of this fire episode13. Although fires occur regularly in the savannas in northern Australia, the recent episodes were extremely large in scale and intensity, burning unusually large areas of eucalyptus forest in the southeast13. The fires were driven partly by climate change14,15, making better-constrained emission estimates particularly important. This is because the build-up of atmospheric carbon dioxide may become increasingly dependent on fire-driven climate-carbon feedbacks, as highlighted by this event16.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03712-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03712-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2024 Germany, United Kingdom, United Kingdom, Belgium, France, France, France, Germany, France, Netherlands, United KingdomPublisher:Copernicus GmbH Funded by:UKRI | ARIES: ADVANCED RESEARCH ..., EC | ASPIRe, UKRI | IDEAL UK FIRE: Toward Inf... +5 projectsUKRI| ARIES: ADVANCED RESEARCH AND INNOVATION IN ENVIRONMENTAL SCIENCES ,EC| ASPIRe ,UKRI| IDEAL UK FIRE: Toward Informed Decisions on Ecologically Adaptive Land management for mitigating UK FIRE ,EC| FirEUrisk ,UKRI| Options for Net Zero Plus and Climate Change Adaptation ,EC| FireIce ,UKRI| Climate change impacts on global wildfire ignitions by lightning and the safe management of landscape fuels ,FCT| CITABM. W. Jones; D. I. Kelley; C. A. Burton; F. Di Giuseppe; M. L. F. Barbosa; M. L. F. Barbosa; E. Brambleby; A. J. Hartley; A. Lombardi; G. Mataveli; G. Mataveli; J. R. McNorton; F. R. Spuler; J. B. Wessel; J. B. Wessel; J. T. Abatzoglou; L. O. Anderson; N. Andela; S. Archibald; D. Armenteras; E. Burke; R. Carmenta; E. Chuvieco; H. Clarke; S. H. Doerr; P. M. Fernandes; L. Giglio; D. S. Hamilton; S. Hantson; S. Harris; P. Jain; C. A. Kolden; T. Kurvits; S. Lampe; S. Meier; S. New; M. Parrington; M. M. G. Perron; Y. Qu; Y. Qu; N. S. Ribeiro; B. H. Saharjo; J. San-Miguel-Ayanz; J. K. Shuman; V. Tanpipat; G. R. van der Werf; S. Veraverbeke; S. Veraverbeke; G. Xanthopoulos;Abstract. Climate change contributes to the increased frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regionalised research efforts. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use and forecast future risks under different climate scenarios. During the 2023–2024 fire season, 3.9×106 km2 burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totalling 2.4 Pg C. Global fire C emissions were increased by record emissions in Canadian boreal forests (over 9 times the average) and reduced by low emissions from African savannahs. Notable events included record-breaking fire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawaii (100 deaths) and Chile (131 deaths). Over 232 000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece, a combination of high fire weather and an abundance of dry fuels increased the probability of fires, whereas burned area anomalies were weaker in regions with lower fuel loads and higher direct suppression, particularly in Canada. Fire weather prediction in Canada showed a mild anomalous signal 1 to 2 months in advance, whereas events in Greece and Amazonia had shorter predictability horizons. Attribution analyses indicated that modelled anomalies in burned area were up to 40 %, 18 %, and 50 % higher due to climate change in Canada, Greece, and western Amazonia during the 2023–2024 fire season, respectively. Meanwhile, the probability of extreme fire seasons of these magnitudes has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude to 2023 in Canada are projected to occur 6.3–10.8 times more frequently under a medium–high emission scenario (SSP370). This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society's resilience to wildfires and promote advances in preparedness, mitigation, and adaptation. New datasets presented in this work are available from https://doi.org/10.5281/zenodo.11400539 (Jones et al., 2024) and https://doi.org/10.5281/zenodo.11420742 (Kelley et al., 2024a).
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2024License: CC BYFull-Text: https://doi.org/10.5281/zenodo.11400539Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Review . 2024Fachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2025 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-3601-2024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2024License: CC BYFull-Text: https://doi.org/10.5281/zenodo.11400539Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Review . 2024Fachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2025 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-3601-2024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Germany, Netherlands, France, Germany, Netherlands, Netherlands, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | PEGASOS, EC | CITYZEN, EC | MACCEC| PEGASOS ,EC| CITYZEN ,EC| MACCDetlef P. van Vuuren; Detlef P. van Vuuren; Toshihiko Masui; Steven J. Smith; Jean-Francois Lamarque; Catherine Liousse; Toshimasa Ohara; Jean-Christophe Raut; Gregory J. Frost; Gregory J. Frost; Ariela D'Angiola; Angelika Heil; Aude Mieville; Allison M. Thompson; Bertrand Bessagnet; Tami C. Bond; Hugo Denier van der Gon; Stefan Kinne; Claire Granier; Keywan Riahi; Silvia Kloster; John van Aardenne; Zbigniew Klimont; Guido R. van der Werf; Johannes W. Kaiser; Martin G. Schultz; F. Meleux;handle: 1871/33494
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NO
Climatic Change arrow_drop_down Climatic ChangeArticle . 2011INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data PortalINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-011-0154-1&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Climatic Change arrow_drop_down Climatic ChangeArticle . 2011INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data PortalINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-011-0154-1&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Review , Journal 2017Embargo end date: 09 Aug 2017 Netherlands, France, Netherlands, Netherlands, Switzerland, Netherlands, Germany, BelgiumPublisher:Copernicus GmbH Funded by:ANR | L-IPSL, EC | GEOCARBON, FCT | Center for Environmental ... +1 projectsANR| L-IPSL ,EC| GEOCARBON ,FCT| Center for Environmental and Sustainability Research ,EC| BACIJ. Zscheischler; J. Zscheischler; M. D. Mahecha; M. D. Mahecha; M. D. Mahecha; V. Avitabile; L. Calle; N. Carvalhais; N. Carvalhais; P. Ciais; F. Gans; N. Gruber; J. Hartmann; M. Herold; K. Ichii; K. Ichii; M. Jung; P. Landschützer; P. Landschützer; G. G. Laruelle; R. Lauerwald; R. Lauerwald; D. Papale; P. Peylin; B. Poulter; B. Poulter; D. Ray; P. Regnier; C. Rödenbeck; R. M. Roman-Cuesta; C. Schwalm; G. Tramontana; A. Tyukavina; R. Valentini; G. van der Werf; T. O. West; J. E. Wolf; M. Reichstein; M. Reichstein; M. Reichstein;Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1), Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo, and Indonesia. Overall, and because of the overestimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001–2010 indicates that the true value of NCE is a net CO2 source of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1 highlights observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the priority list are tropical land regions, which suffer from a lack of in situ observations. Second, extensive pCO2 data are missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary, and inland water–atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multicriteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without over- or under-stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change, and forestry sector, upon which future emission reductions are proposed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Netherlands, AustraliaPublisher:American Geophysical Union (AGU) Yurganov, Leonid N; McMillan, W. Wallace; Dzhola, Anatoly V; Grechko, Evgeny I; Jones, Nicholas B; van der Werf, Guido R;doi: 10.1029/2007jd009229
handle: 1871/23333
New results of CO global total column measurements using the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite in comparison with Measurements of Pollution in the Troposphere (MOPITT) sensor aboard the Terra satellite are presented. Both data sets are validated using ground‐based total column measurements in Russia and Australia. A quality parameter based on the Profile Percent A Priori values from the standard MOPITT product is introduced. AIRS data (version 4) for biomass burning events are in agreement or lower than both MOPITT and ground measurements, but CO bursts can be seen by AIRS in most cases. For the cases of low CO amounts in the Southern Hemisphere AIRS has a positive bias of ∼30–40% compared to MOPITT and ground truth. MOPITT data were used to estimate interannual variations of CO sources assuming a standard seasonal cycle for the main CO remover OH. A positive trend of CO global emissions for the second half of the year between 2000 and 2006 was found with no visible trend for the first half of the year. CO annual emission in 2006 was 184 ± 40 Tg higher that that in 2000–2001. The monthly emission anomalies correlate well with an independently calculated Global Fire Emission Database (GFED2). Total carbon contribution from biomass burning in 1997, 1998 (both estimated by GFED2), and 2006 (according to MOPITT) were as high as (0.6–1) Pg C/year larger than in 2000, suggesting that fires can explain a substantial fraction of the interannual variability of CO2.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2008University of Wollongong, Australia: Research OnlineArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007jd009229&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2008University of Wollongong, Australia: Research OnlineArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007jd009229&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2024Publisher:Zenodo Funded by:EC | FireIceEC| FireIcevan Gerrevink, Max J.; Veraverbeke, Sander; Cooperdock, Sol; Potter, Stefano; Zhong, Qirui; Moubarak, Michael; Goetz, Scott J.; Mack, Michelle C.; Randerson, James T.; Schutgens, Nick; Turetsky, Merritt R.; van der Werf, Guido R.; Rogers, Brendan M.;Computer code as part of the publication in review: "Climate warming and cooling feedbacks from North American boreal forest fires" Max J. van Gerrevink1, Sander Veraverbeke1,2, Sol Cooperdock3, Stefano Potter3, Qirui Zhong1,4 Michael Moubarak5, Scott J. Goetz6, Michelle C. Mack7, James T. Randerson8, Nick Schutgens1, Merritt R. Turetsky9, Guido R. van der Werf10, and Brendan M. Rogers3 1Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands 2School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom 3Woodwell Climate Research Center, Falmouth, MA, USA 4College of Urban and Environmental Sciences, Peking University, Beijing, China 5Hamilton College, Hamilton, NY, USA 6School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA 7Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA 8Department of Earth System Science, University of California, Irvine, CA, USA 9Renewable and Sustainable Energy Institute, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA 10Meteorology & Air Quality Group, Wageningen University and Research, Wageningen, The Netherlands Correspondence to: Max J. van Gerrevink (m.j.van.gerrevink@vu.nl) Files contain the computer code used to compute the climate radiative forcing from fire. The computer code is spilt into 7 different scripts: Well-mixed greenhouse gasses, precursors, and aerosol radiative forcing : Radiative_forcing_GHG_precursors_aerosols_boxmodel.py Mapping and uncertainty of Well-mixed greenhouse gasses, precursors, and aerosol radiative forcing : Radiative_forcing_GHG_precursors_aerosols_Mapping_and_uncertainty.py Permafrost greenhouse gas emissions radiative forcing : Radiative_Forcing_Permafrost_GHG.py Changes in surface albedo radiative forcing : Radiative_Forcing_Albedo_change.py Uncertainty in surface albedo radiative forcing : Radiative_Forcing_Albedo_change_uncertainty.py Vegetation recovery radiative forcing : Radiative_Forcing_vegetation_recovery.py Uncertainty in vegetation recovery radiative forcing : Radiative_Forcing_vegetation_recovery_uncertainty.py * The sensitivity analysis for Permafrost greenhouse gas emissions is included in the Radiative_Forcing_Permafrost_GHG.py script. Additionally, input files for atmospheric concentrations and impulse response function data are included as CSV files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14280633&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14280633&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, United Kingdom, Switzerland, United Kingdom, Netherlands, Netherlands, United Kingdom, Netherlands, United Kingdom, Norway, United KingdomPublisher:Copernicus GmbH Funded by:EC | CARBOCHANGE, SNSF | Klima- und Umweltphysik, RCN | Support for the Scientifi... +3 projectsEC| CARBOCHANGE ,SNSF| Klima- und Umweltphysik ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| GEOCARBON ,EC| COMBINE ,SNSF| Climate and Environmental PhysicsClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1 PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2013 . Peer-reviewedData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10871/20993Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2013Spiral - Imperial College Digital RepositoryArticle . 2013Data sources: Spiral - Imperial College Digital RepositoryBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Martina Schmidt; Stanley C. Tyler; Fabrice Papa; Didier Hauglustaine; M. Ramonet; Philippe Ciais; G. R. van der Werf; Philippe Peylin; C. Carouge; Edward J. Dlugokencky; J. Lathière; Ray L. Langenfelds; John B. Miller; John B. Miller; Catherine Prigent; E. G. Brunke; L. P. Steele; James W. C. White; Philippe Bousquet; Philippe Bousquet;Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Niño event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature05132&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature05132&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Germany, Netherlands, GermanyPublisher:Copernicus GmbH Funded by:NWO | Biomass-burning radiative..., NWO | Isotopes for resolving th...NWO| Biomass-burning radiative forcing ,NWO| Isotopes for resolving the Atmospheric CO Budget (IACOB)Tom Eames; Guido R. van der Werf; Patrik Winiger; Patrik Winiger; Anupam Shaikat; Carina van der Veen; Natasha Ribeiro; Roland Vernooij; Chenxi Qiu; Chenxi Qiu; Ulrike Dusek; Peng Yao; M. E. Popa;Abstract. Landscape fires are a significant contributor to atmospheric burdens of greenhouse gases and aerosols. Although many studies have looked at biomass burning products and their fate in the atmosphere, estimating and tracing atmospheric pollution from landscape fires based on atmospheric measurements are challenging due to the large variability in fuel composition and burning conditions. Stable carbon isotopes in biomass burning (BB) emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to various combustion products. However, there are still many uncertainties regarding changes in isotopic composition (also known as fractionation) of the emitted carbon compared to the burnt fuel during the pyrolysis and combustion processes. To study BB isotope fractionation, we performed a series of laboratory fire experiments in which we burned pure C3 and C4 plants as well as mixtures of the two. Using isotope ratio mass spectrometry (IRMS), we measured stable carbon isotope signatures in the pre-fire fuels and post-fire residual char, as well as in the CO2, CO, CH4, organic carbon (OC), and elemental carbon (EC) emissions, which together constitute over 98 % of the post-fire carbon. Our laboratory tests indicated substantial isotopic fractionation in combustion products compared to the fuel, which varied between the measured fire products. CO2, EC, and residual char were the most reliable tracers of the fuel 13C signature. CO in particular showed a distinct dependence on burning conditions; flaming emissions were enriched in 13C compared to smouldering combustion emissions. For CH4 and OC, the fractionation was the other way round for C3 emissions (13C-enriched) and C4 emissions (13C-depleted). This indicates that while it is possible to distinguish between fires that were dominated by either C3 or C4 fuels using these tracers, it is more complicated to quantify their relative contribution to a mixed-fuel fire based on the δ13C signature of emissions. Besides laboratory experiments, we sampled gases and carbonaceous aerosols from prescribed fires in the Niassa Special Reserve (NSR) in Mozambique, using an unmanned aerial system (UAS)-mounted sampling set-up. We also provided a range of C3:C4 contributions to the fuel and measured the fuel isotopic signatures. While both OC and EC were useful tracers of the C3-to-C4 fuel ratio in mixed fires in the lab, we found particularly OC to be depleted compared to the calculated fuel signal in the field experiments. This suggests that either our fuel measurements were incomprehensive and underestimated the C3:C4 ratio in the field or other processes caused this depletion. Although additional field measurements are needed, our results indicate that C3-vs.-C4 source ratio estimation is possible with most BB products, albeit with varying uncertainty ranges.
Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2022Atmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: University of Groningen Research PortalAtmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-22-2871-2022&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2022Atmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: University of Groningen Research PortalAtmospheric Chemistry and Physics (ACP)Article . 2022License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-22-2871-2022&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2023 NetherlandsPublisher:Copernicus GmbH Funded by:NWO | Biomass-burning radiative...NWO| Biomass-burning radiative forcingR. Vernooij; T. Eames; J. Russell-Smith; J. Russell-Smith; C. Yates; C. Yates; R. Beatty; R. Beatty; J. Evans; J. Evans; A. Edwards; A. Edwards; N. Ribeiro; M. Wooster; M. Wooster; T. Strydom; M. V. Giongo; M. A. Borges; M. Menezes Costa; A. C. S. Barradas; D. van Wees; G. R. Van der Werf;Abstract. Landscape fires, predominantly found in the frequently burning global savannas, are a substantial source of greenhouse gases and aerosols. The impact of these fires on atmospheric composition is partially determined by the chemical breakup of the constituents of the fuel into individual emitted chemical species, which is described by emission factors (EFs). These EFs are known to be dependent on, amongst other things, the type of fuel consumed, the moisture content of the fuel, and the meteorological conditions during the fire, indicating that savanna EFs are temporally and spatially dynamic. Global emission inventories, however, rely on static biome-averaged EFs, which makes them ill-suited for the estimation of regional biomass burning (BB) emissions and for capturing the effects of shifts in fire regimes. In this study we explore the main drivers of EF variability within the savanna biome and assess which geospatial proxies can be used to estimate dynamic EFs for global emission inventories. We made over 4500 bag measurements of CO2, CO, CH4, and N2O EFs using a UAS and also measured fuel parameters and fire-severity proxies during 129 individual fires. The measurements cover a variety of savanna ecosystems under different seasonal conditions sampled over the course of six fire seasons between 2017 and 2022. We complemented our own data with EFs from 85 fires with locations and dates provided in the literature. Based on the locations, dates, and times of the fires we retrieved a variety of fuel, weather, and fire-severity proxies (i.e. possible predictors) using globally available satellite and reanalysis data. We then trained random forest (RF) regressors to estimate EFs for CO2, CO, CH4, and N2O at a spatial resolution of 0.25∘ and a monthly time step. Using these modelled EFs, we calculated their spatiotemporal impact on BB emission estimates over the 2002–2016 period using the Global Fire Emissions Database version 4 with small fires (GFED4s). We found that the most important field indicators for the EFs of CO2, CO, and CH4 were tree cover density, fuel moisture content, and the grass-to-litter ratio. The grass-to-litter ratio and the nitrogen-to-carbon ratio were important indicators for N2O EFs. RF models using satellite observations performed well for the prediction of EF variability in the measured fires with out-of-sample correlation coefficients between 0.80 and 0.99, reducing the error between measured and modelled EFs by 60 %–85 % compared to using the static biome average. Using dynamic EFs, total global savanna emission estimates for 2002–2016 were 1.8 % higher for CO, while CO2, CH4, and N2O emissions were, respectively, 0.2 %, 5 %, and 18 % lower compared to GFED4s. On a regional scale we found a spatial redistribution compared to GFED4s with higher CO, CH4, and N2O EFs in mesic regions and lower ones in xeric regions. Over the course of the fire season, drying resulted in gradually lower EFs of these species. Relatively speaking, the trend was stronger in open savannas than in woodlands, where towards the end of the fire season they increased again. Contrary to the minor impact on annual average savanna fire emissions, the model predicts localized deviations from static averages of the EFs of CO, CH4, and N2O exceeding 60 % under seasonal conditions.
Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/esd-14-1039-2023&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/esd-14-1039-2023&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Biomass-burning radiative...NWO| Biomass-burning radiative forcingSander Houweling; Sander Houweling; J. Pepijn Veefkind; J. Pepijn Veefkind; Ivar R. van der Velde; Ivar R. van der Velde; Richard van Hees; Ilse Aben; Ilse Aben; Paul J. J. Tol; Tim A. van Kempen; Tobias Borsdorff; Guido R. van der Werf; Joannes D. Maasakkers; Ruud W. M. Hoogeveen; Jochen Landgraf;Southeast Australia experienced intensive and geographically extensive wildfires during the 2019-2020 summer season1,2. The fires released substantial amounts of carbon dioxide into the atmosphere3. However, existing emission estimates based on fire inventories are uncertain4, and vary by up to a factor of four for this event. Here we constrain emission estimates with the help of satellite observations of carbon monoxide5, an analytical Bayesian inversion6 and observed ratios between emitted carbon dioxide and carbon monoxide7. We estimate emissions of carbon dioxide to be 715 teragrams (range 517-867) from November 2019 to January 2020. This is more than twice the estimate derived by five different fire inventories8-12, and broadly consistent with estimates based on a bottom-up bootstrap analysis of this fire episode13. Although fires occur regularly in the savannas in northern Australia, the recent episodes were extremely large in scale and intensity, burning unusually large areas of eucalyptus forest in the southeast13. The fires were driven partly by climate change14,15, making better-constrained emission estimates particularly important. This is because the build-up of atmospheric carbon dioxide may become increasingly dependent on fire-driven climate-carbon feedbacks, as highlighted by this event16.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03712-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03712-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2024 Germany, United Kingdom, United Kingdom, Belgium, France, France, France, Germany, France, Netherlands, United KingdomPublisher:Copernicus GmbH Funded by:UKRI | ARIES: ADVANCED RESEARCH ..., EC | ASPIRe, UKRI | IDEAL UK FIRE: Toward Inf... +5 projectsUKRI| ARIES: ADVANCED RESEARCH AND INNOVATION IN ENVIRONMENTAL SCIENCES ,EC| ASPIRe ,UKRI| IDEAL UK FIRE: Toward Informed Decisions on Ecologically Adaptive Land management for mitigating UK FIRE ,EC| FirEUrisk ,UKRI| Options for Net Zero Plus and Climate Change Adaptation ,EC| FireIce ,UKRI| Climate change impacts on global wildfire ignitions by lightning and the safe management of landscape fuels ,FCT| CITABM. W. Jones; D. I. Kelley; C. A. Burton; F. Di Giuseppe; M. L. F. Barbosa; M. L. F. Barbosa; E. Brambleby; A. J. Hartley; A. Lombardi; G. Mataveli; G. Mataveli; J. R. McNorton; F. R. Spuler; J. B. Wessel; J. B. Wessel; J. T. Abatzoglou; L. O. Anderson; N. Andela; S. Archibald; D. Armenteras; E. Burke; R. Carmenta; E. Chuvieco; H. Clarke; S. H. Doerr; P. M. Fernandes; L. Giglio; D. S. Hamilton; S. Hantson; S. Harris; P. Jain; C. A. Kolden; T. Kurvits; S. Lampe; S. Meier; S. New; M. Parrington; M. M. G. Perron; Y. Qu; Y. Qu; N. S. Ribeiro; B. H. Saharjo; J. San-Miguel-Ayanz; J. K. Shuman; V. Tanpipat; G. R. van der Werf; S. Veraverbeke; S. Veraverbeke; G. Xanthopoulos;Abstract. Climate change contributes to the increased frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regionalised research efforts. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use and forecast future risks under different climate scenarios. During the 2023–2024 fire season, 3.9×106 km2 burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totalling 2.4 Pg C. Global fire C emissions were increased by record emissions in Canadian boreal forests (over 9 times the average) and reduced by low emissions from African savannahs. Notable events included record-breaking fire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawaii (100 deaths) and Chile (131 deaths). Over 232 000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece, a combination of high fire weather and an abundance of dry fuels increased the probability of fires, whereas burned area anomalies were weaker in regions with lower fuel loads and higher direct suppression, particularly in Canada. Fire weather prediction in Canada showed a mild anomalous signal 1 to 2 months in advance, whereas events in Greece and Amazonia had shorter predictability horizons. Attribution analyses indicated that modelled anomalies in burned area were up to 40 %, 18 %, and 50 % higher due to climate change in Canada, Greece, and western Amazonia during the 2023–2024 fire season, respectively. Meanwhile, the probability of extreme fire seasons of these magnitudes has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude to 2023 in Canada are projected to occur 6.3–10.8 times more frequently under a medium–high emission scenario (SSP370). This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society's resilience to wildfires and promote advances in preparedness, mitigation, and adaptation. New datasets presented in this work are available from https://doi.org/10.5281/zenodo.11400539 (Jones et al., 2024) and https://doi.org/10.5281/zenodo.11420742 (Kelley et al., 2024a).
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2024License: CC BYFull-Text: https://doi.org/10.5281/zenodo.11400539Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Review . 2024Fachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2025 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-3601-2024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2024License: CC BYFull-Text: https://doi.org/10.5281/zenodo.11400539Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Review . 2024Fachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2025 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-3601-2024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Germany, Netherlands, France, Germany, Netherlands, Netherlands, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | PEGASOS, EC | CITYZEN, EC | MACCEC| PEGASOS ,EC| CITYZEN ,EC| MACCDetlef P. van Vuuren; Detlef P. van Vuuren; Toshihiko Masui; Steven J. Smith; Jean-Francois Lamarque; Catherine Liousse; Toshimasa Ohara; Jean-Christophe Raut; Gregory J. Frost; Gregory J. Frost; Ariela D'Angiola; Angelika Heil; Aude Mieville; Allison M. Thompson; Bertrand Bessagnet; Tami C. Bond; Hugo Denier van der Gon; Stefan Kinne; Claire Granier; Keywan Riahi; Silvia Kloster; John van Aardenne; Zbigniew Klimont; Guido R. van der Werf; Johannes W. Kaiser; Martin G. Schultz; F. Meleux;handle: 1871/33494
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NO
Climatic Change arrow_drop_down Climatic ChangeArticle . 2011INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data PortalINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-011-0154-1&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Climatic Change arrow_drop_down Climatic ChangeArticle . 2011INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data PortalINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-011-0154-1&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Review , Journal 2017Embargo end date: 09 Aug 2017 Netherlands, France, Netherlands, Netherlands, Switzerland, Netherlands, Germany, BelgiumPublisher:Copernicus GmbH Funded by:ANR | L-IPSL, EC | GEOCARBON, FCT | Center for Environmental ... +1 projectsANR| L-IPSL ,EC| GEOCARBON ,FCT| Center for Environmental and Sustainability Research ,EC| BACIJ. Zscheischler; J. Zscheischler; M. D. Mahecha; M. D. Mahecha; M. D. Mahecha; V. Avitabile; L. Calle; N. Carvalhais; N. Carvalhais; P. Ciais; F. Gans; N. Gruber; J. Hartmann; M. Herold; K. Ichii; K. Ichii; M. Jung; P. Landschützer; P. Landschützer; G. G. Laruelle; R. Lauerwald; R. Lauerwald; D. Papale; P. Peylin; B. Poulter; B. Poulter; D. Ray; P. Regnier; C. Rödenbeck; R. M. Roman-Cuesta; C. Schwalm; G. Tramontana; A. Tyukavina; R. Valentini; G. van der Werf; T. O. West; J. E. Wolf; M. Reichstein; M. Reichstein; M. Reichstein;Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1), Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo, and Indonesia. Overall, and because of the overestimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001–2010 indicates that the true value of NCE is a net CO2 source of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1 highlights observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the priority list are tropical land regions, which suffer from a lack of in situ observations. Second, extensive pCO2 data are missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary, and inland water–atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multicriteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without over- or under-stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change, and forestry sector, upon which future emission reductions are proposed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Netherlands, AustraliaPublisher:American Geophysical Union (AGU) Yurganov, Leonid N; McMillan, W. Wallace; Dzhola, Anatoly V; Grechko, Evgeny I; Jones, Nicholas B; van der Werf, Guido R;doi: 10.1029/2007jd009229
handle: 1871/23333
New results of CO global total column measurements using the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite in comparison with Measurements of Pollution in the Troposphere (MOPITT) sensor aboard the Terra satellite are presented. Both data sets are validated using ground‐based total column measurements in Russia and Australia. A quality parameter based on the Profile Percent A Priori values from the standard MOPITT product is introduced. AIRS data (version 4) for biomass burning events are in agreement or lower than both MOPITT and ground measurements, but CO bursts can be seen by AIRS in most cases. For the cases of low CO amounts in the Southern Hemisphere AIRS has a positive bias of ∼30–40% compared to MOPITT and ground truth. MOPITT data were used to estimate interannual variations of CO sources assuming a standard seasonal cycle for the main CO remover OH. A positive trend of CO global emissions for the second half of the year between 2000 and 2006 was found with no visible trend for the first half of the year. CO annual emission in 2006 was 184 ± 40 Tg higher that that in 2000–2001. The monthly emission anomalies correlate well with an independently calculated Global Fire Emission Database (GFED2). Total carbon contribution from biomass burning in 1997, 1998 (both estimated by GFED2), and 2006 (according to MOPITT) were as high as (0.6–1) Pg C/year larger than in 2000, suggesting that fires can explain a substantial fraction of the interannual variability of CO2.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2008University of Wollongong, Australia: Research OnlineArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007jd009229&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2008University of Wollongong, Australia: Research OnlineArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007jd009229&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2024Publisher:Zenodo Funded by:EC | FireIceEC| FireIcevan Gerrevink, Max J.; Veraverbeke, Sander; Cooperdock, Sol; Potter, Stefano; Zhong, Qirui; Moubarak, Michael; Goetz, Scott J.; Mack, Michelle C.; Randerson, James T.; Schutgens, Nick; Turetsky, Merritt R.; van der Werf, Guido R.; Rogers, Brendan M.;Computer code as part of the publication in review: "Climate warming and cooling feedbacks from North American boreal forest fires" Max J. van Gerrevink1, Sander Veraverbeke1,2, Sol Cooperdock3, Stefano Potter3, Qirui Zhong1,4 Michael Moubarak5, Scott J. Goetz6, Michelle C. Mack7, James T. Randerson8, Nick Schutgens1, Merritt R. Turetsky9, Guido R. van der Werf10, and Brendan M. Rogers3 1Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands 2School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom 3Woodwell Climate Research Center, Falmouth, MA, USA 4College of Urban and Environmental Sciences, Peking University, Beijing, China 5Hamilton College, Hamilton, NY, USA 6School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA 7Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA 8Department of Earth System Science, University of California, Irvine, CA, USA 9Renewable and Sustainable Energy Institute, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA 10Meteorology & Air Quality Group, Wageningen University and Research, Wageningen, The Netherlands Correspondence to: Max J. van Gerrevink (m.j.van.gerrevink@vu.nl) Files contain the computer code used to compute the climate radiative forcing from fire. The computer code is spilt into 7 different scripts: Well-mixed greenhouse gasses, precursors, and aerosol radiative forcing : Radiative_forcing_GHG_precursors_aerosols_boxmodel.py Mapping and uncertainty of Well-mixed greenhouse gasses, precursors, and aerosol radiative forcing : Radiative_forcing_GHG_precursors_aerosols_Mapping_and_uncertainty.py Permafrost greenhouse gas emissions radiative forcing : Radiative_Forcing_Permafrost_GHG.py Changes in surface albedo radiative forcing : Radiative_Forcing_Albedo_change.py Uncertainty in surface albedo radiative forcing : Radiative_Forcing_Albedo_change_uncertainty.py Vegetation recovery radiative forcing : Radiative_Forcing_vegetation_recovery.py Uncertainty in vegetation recovery radiative forcing : Radiative_Forcing_vegetation_recovery_uncertainty.py * The sensitivity analysis for Permafrost greenhouse gas emissions is included in the Radiative_Forcing_Permafrost_GHG.py script. Additionally, input files for atmospheric concentrations and impulse response function data are included as CSV files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14280633&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14280633&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
